
NASA-CR-192 734 NAGW-1333

/j -/:,: • /C-----

_.] f:

(':

I

TI:'P_HMt__t _T__T_

Center for Intelligent

Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute

Troy, New York 12180-3590 .

(NASA-CR-192734) LECTURE MATERIALS

FOR THE CTOS/MCS INTRODUCTORY

COURSE (Rensselder Polytechnic

Inst.) 2_7 p

N93-21308

Unclas

NGINEERING an:I F: ;,GAL

SC,_ENrr. , : -y

AUG 26 1991

UNIVERSITYOF M;,_:_ g_,:D

COLLEGE PARK. MAR','LAr_

G3/63 0153760

LECTURE MATERIALS FOR THE CTOS/MCS

INTRODUCTORY COURSE

by

Keith Fieldhouse, Kevin Holt, Don LeFebvre,

Steve Murphy, Dave Swift, and Jim Watson

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering Department

Troy, New York 12180-3590

July 1991

CIRSSE REPORT #97

I

I

|

mI

K

Lecture Materials for the CTOS/MCS

Introductory Course

Keith Fieldhouse

Steve Murphy

Kevin Holt

Dave Swift

Don Lefebvre

Jim Watson

August 12, 1991

Abstract

On July 18 and 19, 1991 the Center for Intelligent Robotic Systems

for Space Exploration presented a course on its robotic testbed support

software as it then existed. The course materials are collected as a

reflection of the state of those systems at that time.

1 Introduction

The CIRSSE testbed consists of two Unimation PUMA 6 degrees-of-Freedom

manipulator arms mounted on a 6 degrees-of-freedom (two 3 DOF carts on a

12 foot rail system) transporter platform. The testbed hardware is controlled

through several Motorola single board computers and associated VME I/O

boards.

The interface to the system is managed by a software system currently

under development at CIRSSE. This software has evolved into two distinct

sub-systems: the CIRSSE Testbed Operating System (CTOS) and the Mo-

tion Control System (MCS). The design of CTOS/MCS is driven by several

fundamental requirements:

• The system must provide a designed, convenient interface to the testbed

for both of its distinct user groups:

- Researchers who wish to work on the actual control of the testbed

devices. Such researcher may wish to substitute customized con-

trollers, trajectory generators, device interfaces etc.

- Researchers who require motion service from the testbed as part

of their research agenda, but who are more concerned with the re-

liability and repeatability of the motion rather than the algorithm

which produced it.

As homogeneous an interface as possible should exist between the user

and the 18 degrees-of-freedom available in the testbed. Different exper-

imental set-ups should be possible, allowing the testbed to be treated

as two 9 DOF arms, one 18 DOF manipulator system, 3 6 DOF ma-

nipulators and so on. Further, it should be possible to reconfigure the

testbed with new manipulator devices as they become available.

For performance reasons, the controlling software for the testbed runs

on multiple single board computers on a VME backplane. This intro-

duces a level of complexity that the software system must encapsulate

and hide as much as possible.

• The entire control system must be a part (at the execution level) of

overall CIRSSE hierarchy of intelligent robotic control.

As was noted earlier, two distinct software sub-systems are being devel-

oped to achieve these goals. The first, CTOS, is a layer of utility routines that

extend the base operating system, notably in the area of inter-process (and

inter-processor) communication and synchronization. The second, MCS, es-

tablishes the control and command interface to the testbed hardware.

At the time the CTOS/MCS course was presented the following software

had been developed:

• As part of CTOS:

- A bootstrap system which provides for the distribution of pro-

cesses across any of the Single Board Computers on a single VME
chassis.

!

!

\

R

I

- A message passing system which provides easy, efficient (though

not "realtime") and flexible inter-process and inter-processor com-

munication.

- A time synchronization library that allows multiple processes across

multiple processors by be synchronized at different clock rates.

- Other utilities that provide on demand synchronization, shared

memory access and protection and various other useful functions.

• As part of MCS:

- The MCS State Manager, which manages communication between

the devices available through the MCS.

- "Channel Drivers" (hardware interfaces) for CIRSSE's transporter

platform and the two PUMA manipulators.

- Several different controllers (Basic PID, Gravity compensation)

for the PUMAs and platform.

- A simple trajectory generator capable of reading (from a file) and

interpolating between a series of joint space set points.

The development of the software to this level represented the substantial

achievement of an early CTOS/MCS milestone. Specifically, that enough of

the system be in place that members of CIRSSE not a part of the core devel-

opment team could make use of it. To further achieve this goal, an internal

CTOS/MCS course was developed, the materials for which are collected in

this report.
Divided into 3 lecture sections, a lab exercise period, a case study and

a round table discussion, the CTOS/MCS course ran over a period of two

days.

Due to the broad range of experience levels at CIRSSE, especially with

respect to real time programming issues, the first lecture section was a review

of C language programming, real-time and hardware programming issues and

the VxWorks operating system (a real time OS developed by Wind River

Systems of Alameda California and the software platform on which most

CIRSSE real-time development is done). The intent of the first section of

the course set out to insure that all course participants had at least some

degreeof commonvocabulary and understandingof the issueson which the
rest of the coursewasbased.

Section II of the courselecture coveredthe CIRSSE Testbed Operating

System. This section was of particular importance, as CTOS is expected

to be the infrastructure on which most of the CIRSSE intelligent control

hierarchy is built. Thus, most of the class participants could be expected to

make use of the CTOS interface whether or not they make direct use of the

manipulator testbed.

After the first two lecture sections, the class was broken into groups to

work on a series of lab exercises based on the lecture material presented.

These exercises served to give the participants an opportunity to familiarize

themselves with both the programming environment established for testbed

development and the programming techniques used to work with CTOS.

Day two of the class covered the Motion Control System itself. This

portion of the class was of primary interest to those participants planning to

develop custom components for the MCS and who wished to participate in

the further development of the base components of the system. This lecture

section was followed by a case study of a typical MCS application and the

components that comprise it.

The remainder of this document contains are the lecture notes, supple-

mentary materials, lab exercises and solutions for the first CIRSSE CTOS/MCS

class. These materials are collected here solely as a reflection of the state of

development of the software and are in no way intended to supplant further,

more comprehensive documentation of the systems.

!

!

Acknowledgement

This work was supported by NASA Grant No. NAGW-1333.

4

I

CTOS/MCS

I

!

l

CTOS/MCS

Section !: Overview

Introduction and Overview

• The Context of CTOS & MCS

• C Programming

I

• Realtime Programming and

cessing

Distributed Pro-

• VxWorks !

• The CIRSSE Testbed

ronment

Development Envi-

MCS/CTOS Course

I

Context of CTOS & MCS

• CTOS CIRSSE Testbed Operating Sys-

tem

• MCS Motion Control System

M CS/CTOS Course 2 _

Context of CTOS & MCS

Applications & Experiments

Testbed Components (MCS, VSS)

CTOS

VxWorks UNIX

i

!

MCS/CTOS Course

!

Context of CTOS

Developed to overcome

and

sor

tion

VxWorks with respect to

process communication,

and distribution

limitations in UNIX

interproces-

synchroniza-

Provides a framework and a consistent pro-

gramming interface for testbed components

and applications

Provides an

ment of the

infrastructure for the

Intelligent Machine

develop-

MCS/CTOS Course 4 _

Context of MCS

Major

tors

interface to the testbed manipula-

I

Designed, implemented

tiple manipulators

and tested with mul-

Functional components may

and reconfigured with minimal

be replaced

intervention
!

Developed in conjunction

the current design of the

gent Machine hierarchy

with CTOS and

CIRSSE Intelli-

MCS/CTOS Course 5

!

I

C for CTOS/MCS Programmers

• Syntax

• Pointers and Addresses

• The C Pre-processor

• Sources of Information

MCS/CTOS Course

C Syntax- Literals

9 A decimal integer, with value 91o

010 An octal integer, with value 810

Oxf

'A'

A hexadecimal integer, with value 1510

A single character, the letter "A"

I

A single character, ASCII 71o, the bell

A single character, ASCII 111o, vertical tab

'\t' A single character, a tab

"Hello World"

"HI" "MOM"

The

The

character string

character string

"Hello World"

"HIMOM"
!

'\0' The null character

I

MCS/CTOS Course 7

i

C Syntax- Functions

• All functions have a return type (which

be void)

may

• All parameters are passed by value

Function syntax"

return-type

function-name(parameter-list or void)

{

declarations

statements

MCS/CTOS Course 8

C Syntax- Scoping Rules

/*

** File :

*/
example, c

int x;

extern int y;
static int z;

/* Global Variable */

/* Also defined as IMPORT */

/* Also defined as LOCAL */

I

int fun(int a, int b, int c)

{
int i; i

static int count;

/* Automatic variable, local

to function fun */

/* Not automatic,

but still local to function fun */
!

for (i = O; i < 15; i++) {

int e; /* Automatic variable

local to the for loop */

e = i + y;

}
e = d + i; /* Error, e is undefined ,/

}

MCS/CTOS Course

i

C Syntax - switch statements

• Multi-way decision

• Each case must be an integer constant

• Each case must be unique

• A break must be used to end a case

• A default case is available but not required

• The switch expression must evaluate

integer

to an

MCS/CTOS Course 10 _1_

|

C Syntax- switch statements

Switch Statement Syntax:

switch (variable) {

case 1 :

/_ Statements for case 1 _/

bre _k ;

case 2 :

/_ Statements for case 2 _/

return;

case 3 :

/* Statements for case 3 */

case 4 :

/* Statements for case 3 8_nd 4 _/

bre _k ;

default :

/_ Statements for default case _/

break ;

}

MCS/CTOS Course 11

C Syntax- Structures, Unions and Typedefs

• Aggregates of multiple variables, possibly of differ-
ent data types

• May be copied and assigned to.

• May be passed to and returned by functions

A structure contains space for all of its elements

while a union contains space for any one of its
elements

• An individual union must be used consistently

• A typedef provides an alias for a previously defined
type

M CS/CTOS Course 12 _

|

C Syntax- Structures

Structure Syntax:

struct point2d

int x ;

int y ;

} pl, p2;

{

struct point2d p3;

To reference elements in the structure"

!

pl.x = 5;

p3.y = p2.x;

MCS/CTOS Course 13

i

\

union

C Syntax- Unions and Typedefs

jointlnfo

float

int

{

pos it ion [MAX_ JO INTS]

period [MAX_JOINTS] ;

typedef union jointInfo JOINTINF0;

J01NTINF0 jlist;

To reference elements in a union:

j list. position [3]

j list .period [5] =

= 7.5;

4;

MCS/CTOS Course 14 _I]_

C Pointers- Notation

• Genuinely an address OxffdO not

• Use gz to get the address of a variables

!

• Use • to get

and to declare

the contents of

a variable as an

an address

address

!

MCS/CTOS Course 15

|

C Pointers - Function parameters

Pointers can be used

passing by reference:

void increment (int *p)

tO create argument

{

,p

}

=,p+ I;

int x = i;

increment (ax)

MCS/CTOS Course 16

C Pointers- Structures and Unions

it _,

.%

2

Structure and Union pointers are often used

to avoid passing large data structures back

and forth. The usefulness of this construct

lead to a shorthand for dereferencing a

structure through a pointer to it:

struct test {

int a;

double b ;

char c ;

} tl *pTest ;

pTest = _tl ;

(*pTest). a = 5 ;

pTest->c = 'a' ;

MCS/CTO5 Course 17

C Pointers- Pointer arithmetic

• Integers may be added and

pointers

subtracted from

• Conversion is done based pointer type

• Address exceptions can occur if alignment

isn't heeded

char

char

int

buff [lOl ;

*pc = _buff[O];

*pi = (int ,)_buff [0] ;

MCS/CTOS Course 18

C Pointers- Pointer arithmetic

R

buff

*pc+ 1

*pi+ 1

i !

MCS/CTOS Course 19

!

The C Pre-Processor

• Processes a file before it is seen by

compiler

the

• Directives start with a @ in the first

umn, keywords may be indented

col-

Used to

textually

files

define constants, macros and to

include other C source or "header"

MCS/CTOS Course 20

The C Pre-Processor- Include Files

#ifndef

#define

INCmyheaderh

INCmyheaderh

/* Constants and key words */

#define REDUCE (I)

#define EXPAND (2)

#define PI (3)

/* Macros */

#define FOREVER

#define MIN(_x,_y)

/* For programming

in Georgia */

for(;;)
(_x > _y ? _y : _x)

#define

#define

data/_educe(_what) \

dat aManipulat e (REDUCE, _what)

dataExpand(_what) \

dat aMan ipulat e (EXPAND, _what)

/* Function prototypes */

int dataManipulate(int how; int what);

\

I

!

I

MCS/CTOS Course 21 f-'l_r"v-,n--u-_

i

C Pre-Processor- Inline

i|1

Functions

Consider the following

macro MIN previously

code, when

defined:

used in the

z = MIN(x++,y++) ;

Note that the arguments to the macro are

"x-F+" and "y-t-+", which will result in the

increment being done twice for "x" and "y".

Probably not the desired effect. One possible

solution is inline functions: Included in header

files as:

extern inline min(int x, int y)

}

if (x > y) return(y);

else return (x) ;

MCS/CTOS Course 22 _<____

C Pre-Processor- Inline Functions

Not part of ANSI C but common and

able with GCC

avail-

I

Function replaces its call, but arguments

and scoping of variables handled as with

"normal" functions

!

1

MCS/CTOS Course 23 ___

!

|

Sources of Information

The C Programming Language, Second Edi-

tion, Brian Kernighan and Dennis Ritchie

(K&R)

• Using and Porting GCC, Richard Stallman

• The GCC manual page

MCS/CTOS Course _=u_.__3._

VxWorks

VxWorks is the real time operating system

and development environment used at

C:i:RSSE for motion control and Datacube

based vision experimentation. Some features:

!1

i

• runs on VME based single board

computers

• Rich run time library

• Object code compatibility with U NIX

!

• Close network compatibility with UNIX
|

• An interactive shell

development

for debugging and

MCS/CTOS Course 25

II

I

i

VxWorks- Networking

VxWorks, when installed on a VME cage,

forms a backplane network. This is a TCP/:[P

(]:nternet) network which uses shared memory

on the VME cage as a transport rather than

Ethernet cable. All of the nodes become

standard]:nternet nodes

\

VME Back

vx4vx3

vx2

vxl

vxO

Uranus

\
I

/
Laser

Datacube

Saturn

CIR_ Backbone

Venus Sol
Ral

MCS/CTOS Course 26 _=_

VxWorks- The Kernel

u

When a VxWorks system boots, it loads a

VxWorks kernel over the network from its

supporting host (Venus here at CIRSSE).

This kernel contains the main entry point of

all of the Wind River Supplied

expressly eliminated

the boot process, the

routine may read and execute a

the OS and

code that has not been

from the kernel. During

kernel's entry

user specified script of VxWorks shell

commands, or it may load and call user

specified code.

\

i

!

|

MCS/CTOS Course 27

i

i

VxWorks- Utility Libraries

IstLib Doubly linked lists

rngLib Ring buffers

semLib Intra processor semaphores

spyLib CPU performance monitoring

stdioLib C Standard I/O library

sockLib

ets

UNIX 4.3BSD compatible network sock-

MCS/CTOS Course 28

VxWorks - Kernel Selection
\
II

At CIRSSE there

kernels available.

contain the same

are numerous VxWorks

For the most part they

set of VxWorks utility

are built for the

are built for the

some of the kernels

libraries. Some however

Datacube, while others

Control Cage. Further,

select between VxWorks

command vxboot on any

systems.

support CTOS while others are built as raw

VxWorks development environments. To

kernels, use the

of the CIRSSE UNIX

I

!

|

MCS/CTOS Course 29 '-_""_-'_

!

VxWorks- Kernel Selection

When the vxboot command is used, it will
present you with a list of the CIRSSE
VxWorks processors for which you can select
a kernel, and two pseudo processors:

@control vxO vxl vx2 vx3 vx4

@vision laser datacube

vxO Control cage CPU 0 (MV135)

vxl Control cage CPU 1 (MV135)

vx2 Control cage CPU 2 (MV135)

vx3 Control cage CPU 3 (MV135)

vx4 Control cage CPU 4 (MV135)

datacube Datacube CPU 0 (MV147)

laser Datacube CPU 1 (MV135)

MCS/CTOS Course 3O

VxWorks- Kernel Selection

Once you have selected the processors, you
may select a kernel. The kernels with a--in
their names should be selected only for the
Pseudo processors.

control.ctos.* CTO5 Kernels for Control Processors

control.ctos.mv135 Kernel with CTOS support for
Control Cage

control.default.* Development Kernels for Control
Pro cessors

control.default.mv147 Kernel for Control Cage

development (VxWorks V5)

vision.ctos.* CTO5 Kernels for Vision Processors

vision.default.*

Processors
Development Kernels for Vision

vision.default.mv135 Kernel for laser control

p ro cessor

I

vision.default.my147

processor

Kernel for datacube main

MCS/CTOS Course 31

VxWorks- The Shell

The VxWorks shell provides the user with
simple interactive interface to a system
running VxWorks. It has the following
com m a nds/fea tu res

a

• cd "/home/krf/vxworks" will set the default

directory to "/home/krf/vxworks"

• id < filename.o will load the object code in

"filename.o" into the running VxWorks system

• < filena.me will read a script of VxWorks shell
commands from "filename"

• i will display a list of running processes

function(5,6,7) will call any globally defined C
function (which may be either VxWorks or user
defined). In this case the function is passed the

arguments "4", "5" and "6"

MCS/CTOS Course 32

VxWorks- Dynamic Linking

VxWorks has the unique ability to dynamically
link an object module with an already running
system. This is accomplished by creating a
standard UNIX object module and loading it
with the shell's la command. This dynamic
linking has the following characteristics:

All global symbols are added to
table

the system symbol

When symbols are loaded which have the same

name as already loaded symbols, the old symbols

are effectively replaced

Multiple UNIX object modules may be pre-linked

with the UNIX le command to form a single
object module

!

Unresolved references in an object module must
be resolvable at load time

|

MCS/CTOS Course 33 _"1_ r-'v-,r-,r'_

i

i

VxWorks- Dynamic Linking

Object files appropriate for the VxWorks

environment here at CIRSSE may be created

with the following command:

vxgcc filename, c

• Only creates object modules

• Causes C pre-processor to look in

VxWorks directories

• Uses cross compiler on SPARC (Sun4)

based systems

MCS/CTOS Course 34

VxWorks - Further Information

!

• VxWorks Programmer's Guide

• Using VxWorks at CIRSSE,

#3

Tech Memo
I

• The VxWorks manual pages

vwman IstLib For VxWorks

vwman mv135/sysBusTas

Works functions

For

utility functions

board specific Vx-

!

MCS/CTOS Course 35

Realtime, Hardware and

Programming

Distributed

Realtime Programming Programming in which

the correctness of an operation is depen-

dent not only on its result but on the time

at which the result is achieved

MCS/CTOS Course 36 _

Realtime, ...

Most of the development to date on CTOS
and the MCS have been in the VxWorks
based "realtime" hardware development
environment. There are several
characteristics of this environment that
provide special challenges:

I

The operating system is much less sophisticated

and protective. Accessing memory that is more

likely to crash the system than anything else

• Shared resources may be contended for among
many processors as well as processes

• Communication must take place between

processes and processors
!

Hardware interfaces often must be built from

scratch, utilizing the device registers, interrupts

and other tools often hidden by multi-user
Operating Systems such as UNIX

MCS/CTOS Course 37

Realtime, ...- Hardware Programming

Often

register

board.

Register

toa 1in

it is necessary to set bits in a control

on a particular hardware interface

Consider the following Control Status

on an I/O board. Bit 3 must be set

order to enable the board:

\

#define

#define

IOCSR

ENABLE

((volatile

(Ox04)

char •) OxfffffdfO)

•IOCSR I =

• IOCSR _=

ENABLE ;

-ENABLE;

/* Enable the board */

/, Disable the board */

MCS/CTOS Course 38

Realtime, - Hardware Programming

Often, in realtime programming, it is

necessary to insure that a function is

re-entrant (for]SR's, Event Handlers or

functions that are called by same). This

means

function

function

re-entrancy

that it must

when

is still

not be an error to call

some other version of that

running. To ensure

keep the following in mind:

a

i

• Do not maintain static

variables

automatic !

• Do not use global variables

• Do not arbitrarily use finite

MCS/CTOS Course 39

resources

!1

n

I

Realtime, ...- Resource Contention

In a distributed or multi-tasking environment

it it often possible for multiple threads of

execution to require the use of some limited

resource. It is often necessary to arbitrate the

use of this resource

action. The semaphore

construct protection for

to prevent

ca n be

shared

improper

used to

resources.

There are two basic semaphore operations:

MCS/CTOS Course 40

Realtime, - Resource Contention

TAKE(s) The take

semaphore "s"

removed (made

cesses) and the

operation determines if the

is available. If it is, it is

unavailable to other pro-

thread of execution may

continue, using the protected resource. Note

that the testing of the semaphore and the

removal of it must be indivisible operations

GIVE(s) The GIVE operation simply

an already removed semaphore

replaces

MCS/CTOS Course

Realtime, .. - Memory

A peculiar aspect of many realtime

programming environments (including

at CIRSSE) is that memory is shared

all processes and often among

the one

among

processors.

This provides a convenient method of inter

process communication (when coupled with

semaphores etc.).

OPU 0

1 Meg.
Dual Port

I

CPU 1 4 Meg.

MCS/CTOS Course 42 _

Testbed Development

CIRSSE

src

I

!

MCSICTOS Course 43

Testbed Development - Imake

in order to maintain some degree on

manageability for software that has been

developed for multiple platforms and multiple

operating systems, the CIRSSE testbed

development environment makes heavy use of

the Imake system developed for the

distribution of the X Window System.

MCS/CTOS Course

Testbed Development - Imake

A user of Imake creates creates an Imakefile in

which he or she specifies the targets that should

be built, and the files that make up that target

When creating the Imakefile, the user makes use of

pre-defined macros that are tailored to the specific

system (in this case, the CIRSSE testbed) for which
development is being done.

Imake reads the user's Imakefile and the system
macro definitions and creates a standard UNIX Makefile

which can be called with the make utility

To create a Makefile, type cmkmf in a directory in

which an Imakefile exists. (Mnemonic" cmkmf----
Cirsse MaKe MakeFile) !

If cmkmf is called with arguments, make is automati-

cally called with those arguments once the Imakefile
is converted

MCS/CTOS Course 45 ,.__

I

i

Testbed Development- Imake and cmkmf

AllTarget (exl

VxWorksBinTarget (exl

VxWorksBinTarget (ex2

VxWorksBinTarget (ex3

.o ex2. o)

. o,header.h,)

. o,header2, h,)

.o,header.h,)

Produces

all : exl.o ex2.o ex3.o

exl.o : exl.c header.h

exP. o : exP. c header2.h

ex3.o : ex3.c header.h

MCS/CTOS Course 46

Testbed Development- Naming Conventions

ll

Project Prefix A 3 to 6 letter sequence that uniquely
identifies a project or component, bts, msg, ipb

Functions Upper and Lower case, no underlines. Each

word (but the first) is capitalized. Public functions

start with the project prefix. Object verb arrange-
ment. ipbClear, mcsSIotReserve

i

Variables Same as functions, mcsSMTid, ipbFlag

Constants All upper case. Each word
underscore. Public constants start

prefix. MCS_MAX_SLOTS

separated by an
with the project

!

|

MCS/CTOS Course 47

i

Testbed Development- File Organization

/. _w_ _G_ ./

/*

** File :

** Written By:

,_ Date :

** Purpose :

** Modification History:

,/

/* Include section */

Funct ion:

Purpose :

Returns :

MCS/CTOS Course 48

Testbed Development - Other Conventions

I

Separate system specific code as

possible - code may very well be

for separate operating systems

much as

compiled
I

Use function prototypes to ensure type

ing of parameters and return values

check-

Documentation for most components will

include manual pages for public functions

and Technical Memos for extensive libraries

of functions

!

MCS/CTOS Course 49 _

CTOS/MCS
Section I1: CTOS

!11

i

!

i

lie

]

Outline of CTOS Topics

Processor/Task

• CTOS kernel

• configuration

Message Passing

• building

• message

Configuration

_. configuration

file commands

messages

passing mechanisms

Event

• managing message data

Handler Tasks

• designing an application

• format of event handler functions

• default processing of commands

CTOS Bootstrap Phases

• initialization phases

• application executive

sync

sync

Synchronous Processes

• creating & attaching

• communicating with

MCS/CTOS Course

files

processes

processes

C]:RSSE Testbed Operating System

CTOS supports development of distributed

applications by providing means to:

• distribute processes among CPUs

• communicate between processes

• synchronize execution of processes

MCS/CTOS Course

Configuration Files

Application Configuration File

• specifies chassis (pl.) used
names of chassis config files

• implicitly defines chassis

• currently (mid-July '91)

Chassis

by application and

intercon nections

being developed

CTOS Configuration Files

one CTOS config file per chassis

provides chassis-specific CTOS configuration in-
formation e.g. CPU interconnections & distri-
bution of CTOS tasks

Chassis User Configuration Files

• one user config file per chassis in application

• defines where application software is loaded and
what application tasks are created

MCS/CTOS Course 3 _-__._

CTOS Startup

Existing VME Chassis Startup

1. User defines application in user

2. User specifies user config file in
mand

config file

'ctconfig' com-

3. VxWorks & CTOS kernels load & start when

boot VME cage

4. CTOS reads chassis CTOS config file __ starts
remainder of CTOS

5. User config file is processed to load application
software and create application tasks

6. CTOS broadcasts messages to synchronize ini-
tialization phases

7. "Application executive" takes over at start of

AEXEC phase

!

MCS/CTOS Course

CTOS Startup

Planned Sun/VME Multi-chassis Startup

1. User defines application in application

and chassis user config files
config file

1 CTOS kernels are preloaded and service dae-

mons started to wait for application startup re-
quest

3. User starts application from command line of
Sun or VME chassis

4. - 7. same as existing VME chassis startup

M CS/CTOS Course 5 _'-=_

Config File Command Syntax

CPU_NUMBER COMMAND ARGUMENTS...

All CPUs on a chassis read the same config file,
but only process lines that match their CPU
number

i

Except, lines with CPU_NUMBER of-1

processed by all CPUs

• CPU_NUMBER must start in column 1

are

COMMANDs are separated from CPU_NUMBER

by one or more spaces, and may be upper or lower
case

ARGUMENTS are different for different

commands, and are similarly separated by space(s)

!

• Comment lines begin with '#' or' 'in column 1;
hence blank lines are ignored |

i

MCS/CTOS Course

I

|

Config File

i i

Commands

n LOAD /path/filename

load object module into local memory

order of loading files is important

• usually load shared global variables first

• must load C function before loading code that
calls that function

• all functions used by a task must be loaded
before the task is created

uses /path/ if given, otherwise finds filename in
current directory

n SHARE

load obJect
dress

/path/filename hex_address

module into specified memory ad-

primarily used to load global variables into shared

memory

usually set hex_address to Ox0, which causes

load into address immediately following previ-
ous SHAREd object module

must SHARE same files in same order on any

CPU that receives SHAREd objects

MCS/CTOS Course

Config File Commands, Con't
II

n TASK sym_name func_call priority

-- create an event

-- symbolic_name

handler task

must be unique throughout ap-
plication, and be < 24 characters

function_call specifies the name of the C func-
tion that executes the event handler code

application task priorities should be in the range
of 100- 255; CTOS and VxWorks use priorities
< i00

I

n INCLUDE /path/filename

suspends processing of current config file and
begins processing commands from specified

/path/filename

processing of original config file resumes after

completion of included config file

include files may be nested to any depth

CAUTION" use of CHDIR within an include file

will change current directory for original config
file

!

1

ll

MCS/CTOS Course 8 _

I

i |

Config File Commands, Con't

n CHDIR /path/

changes the current directory to /path/for sub-

sequent LOAD, SHARE and INCLUDE com-
mands that do not explicitly specify a path

n ECHO ON I OFF I text

ECHO effects what is printed to the console

display during config file processing

ECHO OFF will turn off information and warn-

ing messages, but error messages will be dis-

played

ECHO ON or ECHO followed by text will turn

on all message printing, and will display 'text'
to the console

n LOGO /path/filename

-- specifies a file that will be displayed on the con-

sole when the application starts

- the full /path/ to the logo file is REQUIRED

===_ refer to 'ctos_config' manual pages for the most

current information on config file commands MCS/CTOS

Course 9 _

Example User Configuration File

Configuration File for Example Application

'include' command reads another config file

-I include /home/mydir/some_standard_config_stuff

'chdir' command changes current directory

-I chdir /home/mydir/

I

'load '

- 1 load

0 load

1 load

1 load

2 load

3 load

2 load

4 load

command loads

xyzLib, o

mcsCon_rol, o

pidLoops, o

platIoChannel, o

armIoChannel, o

zrmIoChannel, o

trajSen.o

myApplicat ion. o

obj module

!

'task' command creates event handler

0 task MCS_Control mcsMain I00

1 task PID 1 pidAlgo 150

1 task PID_2 pidAlgo 150

1 task PID_3 pidAlgo 150

1 task platI0 platHandler 150

task

|

can mix load & task commands

3 load debug.o

3 task DataLogger dbgLog

MCS/CTO5 Course 10

75

Ill

i

CTOS Supports Two Forms of

Interprocess Communications

e.g. MCS-

CLIENT INTERFACE

LAYER

lO - 40 ms

5 - 10 ms

MCS APPLICATIONS

LAYER

MOTION PLANNING

LAYER

MOTION CONTROL

LAYER

TESTBED INTERFACE

LAYER

, =

HARDWARE

Asynchronous

Communications

(message passing)

Synchronous

Communications

(shared memory

& interrupts)

MCS/CTOS Course 11

Message Structure

struct

dest

so u rce
command

data

datasize

flags

MSG_TYPE

{

TID_TYPE

TID_TYPE

CMD_TYPE

void

int

FLAG_TYPE

}

dest

source ;

command ;

,data

datasize ;

flags

TID of destination (receiving) task
TID of source (sending) task

indicates function of the message

points to additional message data
byte length of additional data

specifies message handling options

i

!

!

MCS/CTOS Course 12

Message Commands

The .command member of MSG_TYPE structure

is used to indicate the function of a message

-- CMD_TYPE is 2-byte unsigned int --_ over 65,000
unique commands

- usually msg.command is equated to a predefined
constant

Message command conventions

- names are upper case and begin with MSG_

-- values are assigned as offsets to blocks of com-
mands

• Standard messages

-- MSG_PINIT"

-- MSG_AINIT"

-- MSG_AEXEC'

User-defined

- define as

begin

begin

begin

#define

#define

messages

offsets to

process initialization

application initialization

application execution

MSG_MY_MESSAGE

MSG_ANOTHER_MSG

MSG_USER, e.g.

MSG_USER+I

MSG_USER+2

MCS/CTOS Course 13

Message Flags

PRIORITY
\

l

MEMOWNER

/
SEND

WAIT

REPLY

WAIT

TYPE

TYPE

REPLY_WAIT
SEND_WAIT

MEMOWNER

PRIORITY

normal, reply, etc. (used by system)
if set, sender will wait for reply

waits if receiver queue is full

specifies who deallocates message data
urgent msgs go to front of queue,
normal to back

Using predefined message flags is recommended:

MF_STANDARD normal priority, receiver owns

memory, no waiting

M F_REPLYWAIT normal priority, receiver owns

memory, wait for reply

MCS/CTOS Course 14

Task ID & Message Routing

ii

TID = Chassis# + CPU# + LocalTask#

up to 16

Chassis

up to 16

CPUs

up to 256

Local Tasks

msg. de st

N

1 Y

CPU

loc Y

hassis

Send msg & data out via internet

Enqueued on local queue

Translate *data to bus address,

then send msg to other VME board

ERROR

MCS/CTO5 Course 15 _'___

Normal Message Passing Mechanism

Local CPU Remote CPU

Source Task

msgSend()

remote

SOCKETS

Destination Tasks

M E SSAG E

DISPATCHER

MCS/CTOS Course 16

I

Message Reply Mechanism

Source Task Destination Task

Io I _ _ P'I

msgSend() ---" r"- msgReply()

®t /

(_ Send message

) Block sending task on
semaphore

(_) megSend() returns reply data

(_ Receive message

(_) Send reply

Unblock sending task

MCS/CTOS Course 17 G;_.___

Message Broadcast Mechanism

i

......... i ..

c-F:u-x

!

CPU y

m

MCS/CTOS Course 18 _._uaur_

Managing Message Data

message

.data

message
data

MEMOWNER = SENDER

datasize

• message sender "owns" memory allocated to

message data

• message receiver should consider
to be READ ONLY

• message sender is responsible for

message data once it is no longer

message data

deallocating
needed

MEMOWNER -- RECEIVER

message sender allocates memory for message

data and "gives it away" to message receiver

message data is automatically deallocated when

receiving task exits event handler function

• use msg Data Keep or msg Data Copy to retain
message data by receiver

MCS/CTOS Course

msgLib Functions

• Sending Messages

msgSend

msgPost

msg Broadcast

msgErrorLog

msgReply

msgAcknowledge
msgBuildSend

general form of send

post msg returns immediately |
send to all tasks

send string to Error Server

reply to message

acknowledge received msg

build then send msg

• Building Messages

msgBuild

msgTypeFlagSet, etc.

set members of struct

set fields of flags

• Working with Task Id's

msgTidQuery
msgTidGetCpu, etc.

msgTidSetCpu, etc.

• Queue Operations

find task id from

get fields-of rid
set fields of tid

name

msgDequeue

msgQueueCount

msgRequeue

read message from local queue

count msgs in queue

put message into local queue

MCS/CTOS Course 2O _

msgLib Functions, Con't

• Memory Management

msgCopy

msgDataCopy

msg Data Keep

msgVarPtrSet

msgVarPtrGet

make copy of message

make copy of message data

keep message data

set pointer to variables

get pointer to variables

• Special Processing

msgAckAINIT

msgDefaultProc

acknowledge AINIT

default processing for msgs

===_ See 'msgLib' manual pages for details of these
functions

MCS/CTOS Course 21 P_

msgBuild Function

MSG_TYPE *msgBuild (MSG_TYPE *msg

TID_TYPE dest ,

TID_TYPE source ,

CMD_TYPE command ,

void *data ,

int datasize ,

FLAG_TYPE flags

MSG_TYPE *msg - pointer to message struct or NULL

TID_TYPE dest - address of destination task

TID_TYPE source - address of task sending message

CMD_TYPE command - message command

void *data - pointer to additional message data

int datasize - number of bytes in message data

FLAG_TYPE flags - message flags
I

msgBuild provides a convenient way to define a

message. The arguments to msgBuild are used to

define the members of the message structure, whose
address is passed in as the first argument. If _msg

NULL then msgBuild will allocate storage.

RETURNS" Pointer to message that was built

II

MCS/CTOS Course 22 ,,_

msgFlagSet Functions

msgMemownerFlagSet - set MEMOWNER field of flag

msgPriorityFlagSet - set PRIORITY field of flag

msgReplyFlagSet - set REPLY_WAIT field of flag

msgSendFlagSet - set SEND_WAIT field of flag

msgTypeFlagSet - set TYPE field of flag

\

FLAG_TYPE msgMemownerFlagSe_ (base_flag, field)

FLAG_TYPE msgPriorityFlagSet (base_flag, field)

FLAG_TYPE msgReplyFlagSet (base_flag, field)

FLAG_TYPE msgSendFlagSet (base flag, field)

FLAGTYPE msgTypeFlagSet (base_flag, field)

FLAG_TYPE

FLAG_TYPE

base_flag

field

- base flag

- new value for flag field

These functions are used to manipulate the fields of a
message .flags member. The actions of these
functions are to replace the particular field of the base
flag with a new value. For instance, the following
function calls change the MEMOWNER field:

msg.flags = msgMemownerFlagSet (msg.flags, MF_MEMOWNER_SENDER) ;

msg.flags = msgMemownerFlagSeZ (MF_STANDAKD, MF_MEMOWNEK_SENDEK) ;

RETURNS: flag resulting from changing 'field' of 'base

flag'

MCS/CTOS Course 23 __._

msgSend Function
I

int msgSend (MSG_TYPE *msg)

MSG_TYPE *msg - pointer to message to be sent

msgSend is the most basic form of message passing,
and the most frequently used. The message pointed

by the function argument contains all of the
information needed by msgSend to route and handle

the message.

to

i

RETURNS"

If reply flag set to REPLY_WAIT_NO:

OK message was successfully sent out.

ERROR error occurred during message passing;

or if SEND_WAIT_NO is set, MsgDispatcher is

busy or destination task's queue is full.

If reply flag other than REPLY_WAIT_NO"

msgSend returns *data from reply message
as an integer).

(cast

!

!

I

MCS/CTOS Course 24

i

msgReply Function

STATUS msgReply (MSG_TYPE *msg

void *data ,

int datasize ,

FLAG_TYPE flags)

MSG_TYPE *msg

void *data

int datasize

FLAG_TYPE flags

- pointer to received message

- pointer to reply data

- size of reply data

- message flags

The msgReply function is used to reply to a received

message. Its primary uses are to respond to requests,

and to acknowledge synchronization messages.

The data pointed to by *data of msgReply is sent via

the reply message and is received by the (now

unblocked) originating task as the return value of

msgSend. However, the *data pointer is ignored when

replying to a broadcast message; so msgSend must be

used (AFTER acknowledging the broadcast if

required).

RETURNS"

sending out

OK or ERROR

reply

indicating success of

MCS/CTOS Course 25 ___

msgTidQuery Function
!1

TID_TYPE msgTidQuery (TID_TYPE rid, char ,taskname)

TID_TYPE rid task id of task calling msgTidQuery

char _taskname - symbolic name of task whose TID is

sought

I

The msgTidQuery function sends a message to the

Tid Server on CPU 0 requesting the TID of the task
with symbolic name *taskname.

While msgTidQuery is waiting for a reply, the task that
called msgTidQuery is blocked. As there is a potential

delay, msgTidQuery should not be used within a fast

synchronous process, except during initialization.
!

RETURNS

If query is successful, returns TID of *taskname. |

If query does not succeed, returns 0.

MCS/CTOS Course

!

msgTidSet &z msgTidGet Functions

i

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

msgTidGetChassis

msgTidGetCpu

msgTidGetLocal

msgTidSetChassis

msgTidSetCpu

msgTidSetLocal

(TID_TYPE rid)

(TID_TYPE rid)

(TID_TYPE rid)

(TID_TYPE rid,

(TID_TYPE tid,

(TID_TYPE rid,

int number)

int number)

int number)

TID_TYPE rid - task id to be manipulated

int number - new value of TID field

These functions are used to access the fields of a TID.

For instance, msgTidSetCpu will set the CPU field of a

TID to a specified value, and msgTidGetCpu will
return the value of the CPU field.

These functions are implemented as macros, and the
msgTidSet functions will directly change the TID
value. Hence, the following are legal statements and
are equivalent:

msg->dest = msgTidSetCpu (msg->dest, O) ;

msgTidSetCpu (msg->dest, O) ;

RETURNS:

msgTidGet functions: value of the TID field

msgTidSet functions: whole TID after setting field

MCS/CTOS Course 27 .,,-,.in i"-,l'-t -_ t-m

Structuring An Application

]:dentify major operations & data flows

- use standard software engineering techniques

Group operations into tasks

- logically group family of
one task

- concurrent operations

- consider single manager
must be serialized

-- assign unique symbolic

related operations into

should be separate tasks

task for operations that

name to each task

Describe inter-task communications

- define messages __ data being passed

roughly, each message

operation

corresponds to a different

draw a diagram showing tasks _. message ex-

changes

identify communication

sage and who receives

partners (who sends mes-

it)

keep high volume communications on same CPU

if possible, or at least same chassis

i

!

|

MCS/CTOS Course 28 ,__._

i

,\

i i

Structuring An Application,

• Write event handler

design "application
execution sequence

build event handlers to

processes

functions

executive"

Build configuration files

- assign tasks to CPUs

dependencies of function

to load object modules

interface

calls

Con't

to perform main

to synchronous

determine order

MCS/CTOS Course 2g

Event Handler Tasks

An event handler task consists of

- event handler shell (with stack)

- event handler function

- message queue

- storage for reply message

- semaphore to wait for replies

-- pointer to saved variables

Event handler shell manages the message queue and

message data

Event handler shell calls the event handler function

when there is a message to process

Event handler function is given TID of current in-
stantiation of the function and pointer to the mes-

sage

Event handler function exits to shell after process-

ing each message

MCS/CTOS Course _._u_

!

!1

n

i

!

Format of

| i

Event

i

Handler Function

int FunctionName (TID_TYPE myTid, MSG_TYPE *meg)

switch

{
case

/*
break

(msg->command)

MSG_AINIT :

application initial izat ion ,/

case MSG_ONE;

/* process

break ;

message one */

case MSG_TW0 ;

/* process

return (0)

}

message two */

/* default processing of commands */

return (msgDefaultProc (myTid, msg));

}

MCS/CTOS Course 31

Tid Server Event Handler Function
w

int btsTidSvr (TID_TYPE myTid, MSG_TYPE *msg)

{
TASKREC *task ;

TID_TYPE result ;

switch (msg->command)

<
case MSG_REGISTER_TID :

/* add rid to symbol table */

task = (TASKREC *) msg->data ;

symAdd (tidTbl, task->name, _task->tid, O)

return (0) ;

case MSG_QUERY_TID :

/* find rid in symbol table */

if (symFindByName (tidTbl, msg->data,

NULL) == ERROR)

result = 0 ;

msgReply (msg, (void *)result,

MS KEEP ADRS, MF STANDARD) ;

return (0) ;

}

&result, I

/* default processing of commands */

return (msgDefaultProc (myTid, msg))

}

MCS/CTOS Course 32

Request to Tid Server

TID_TYPE msgTidquery (TID_TYPE myTid, char *task.name)

{

MSG_TYPE msg ;

/*

msgBuild (_msg,

TIDSVR,

myTid,

MSG_qUERY_TID,

t askname,

sizeof(taskname),

MF_REPLYWAIT

);

send message to TID Server */

/* message

/* dest

/* source

/* comm_md

/* *data

,/
*/
*/
*/
*/

/* datasize */

/* flags */

/* return TID in reply message */

return ((TID_TYPE) msgSend (kmsg)) ;

}

MCS/CTOS Course 33

msg DefaultProc()
U

@ msgDefaultProc function provides default process-
ing of system messages, such as PINIT and AINIT;

plus acknowledges REPLY_WAIT messages

Most event handler functions will have a similar for-

mat with switch/case statements used to decode

the msg.command, and a call to msgDefaultProc
at the end

When the event handler function is ended by the
recommended

return(msgDefaultProc (rid, msg))

-- ending case statement with break will cause a

call to msgDefaultProc

- ending case statement with return(0) will bypass
default processing

!

When an application fails to boot and run, a highly
likely cause is an event handler task improperly re-

sponding to a system message due to bypassing
msgDefaultProc

|

MCS/CTOS Course 34 _ ___

i

i

Reentrant Event Handler Functions

• Any number of event handler tasks can be created
with the same event handler function provided"

-- task symbolic name is unique, and

-- event handler function is reentrant

• Local variables are OK because each task has its

own stack

• Functions with no static variables are reentrant

\ If need static variables

1. define structure to hold all static variables

2. during PIN:IT, allocate memory for static vari-
able structure and initialize its members

3. while still in PIN:IT, save pointer to this struc-

ture with msgVarPtrSet function

4. use msgVarPtrGet function to retrieve pointer
to static variable structure (may want before

switch statement)

MCS/CTOS Course 35 _,_

CTOS Bootstrap Synchronizes Startup

by Stepping Through Phases

Process Initialization Phase (PINIT)

-- can initialize an individual process

-- other processes may not yet exist

Application Initialization Phase (AINIT)

all processes guaranteed to exist and to have

completed PINIT phase

use msgTidQuery function to find

munication partners

can perform initialization between

TID of corn-

processes

Application

-- all

phase

-- begin

message

-- likely will
plication

Execution Phase (AEXEC)

processes guaranteed to have completed AINIT

execution of application when receive AEXEC

have only one task controlling the ap-

(the application executive)

MCS/CTOS Course 36 _

l

!

I

i

i

I

Default

ii

Processing

i

of

i ii

"Phase

ii

Messages"

Bootstrap phase is

- CTOS_Boot is

begun via a broadcast message

blocked while REPLY_WAITing

Phase ends when all

broadcast message

tasks have acknowledged the

-- if one task fails to acknowledge it will block the
whole application

for this reason it is important to call msgDe-

faultProc to ensure that all system messages
are properly processed

• If you want to defer acknowledging completion of
AINIT phase:

1. end case AINIT with return(0) to

acknowledgement

2. complete application initialization

3. explicitly acknowledge AINIT with
function

bypass default

processing

msgAckAINIT

MCS/CTOS Course

Application Executive

CTOS_Boot task controls initialization

-- loads application software & creates
tasks

application

broadcasts messages to start bootstrap phases

Application executive task controls main

sequence of the application

execution

user writes new application executive for each
new application

may be the only task that responds to AEXEC

message

responsible for coordination of application tasks

provides synchronization if additional phases are
needed

commonly will send messages to itself to pro-

vide opportunity for in-coming messages to get
through

alternatively, can use queue management func-
tions to access its message queue

!

|

II

MCS/CTOS Course 38 _

i

Synchronous Service

presented by
Jim Watson

Other resources for follow-up information"

• Tech Memo #4

• On-line man pages (TBD)

• Kevin Holt and Dave Swiftmdesigners of the robot
channel drivers.

MCS/CTOS Course 39

Outline

• Purpose

Data- vs. Time-Synchronization

• Design And Implementation

-- desired functionality

-- architecture

-- p_

-- LSPH

Booting The Synchronous Service

Initializing The Synchronous Service

• Use With Message Passing

MCS/CTOS Course 4O

Purpose

Primary

ports high speed, low

chronization of multiple

purpose: provide a paradigm that sup-

latency, time-syn-

processes distributed

throughout the VME Cage.

cesses using this service will

chronization

chronization

perbound.

every 5-40ms,

periods

Typically, pro-

require syn-

although syn-

have no practical up-

Secondary purpose: to

on the VME Cage.

maintain a system clock

MCS/CTOS Course 41 _

Data- Vs. Time-Synchronization
IE

The distinction is what makes the process runable.

I wait for activ'n

1
I flash strobe 1

/

Example:

activate every second

i

/

wait for

get char

t
process char

activ'n I

from kbI

zj

activate on keystroke

!

|

IE

MCS/CTOS Course .2 t_'lfu"'_r'r'_

i

i

Data- Vs. Time-Synchronization

Data-synchronized

time-synchronized.

reso u rces.

processes can be forced to be

Risk losing data and/or wasting

/

wait for activ'n

t
char avail?

\ /
no

get

es

char from

activate every second

process char

/

MCS/CTOS Course 43 _',ln r-T"T--,r'--i

Data- Vs. Time-Synchronization

Robotic example"

• PUMA joints angles read & torques written every

5ms by the PUMA i/O driver

i

• 6 joint PID controller

• an independent safety process, running in the back-

ground, checks actual PUMA position every 500ms

The PUMA 1/0 driver and safety process are

time-synchronous. The PID, although in lock-step

with the I/O driver, is data-synchronous.

MCS/CTOS Course 44

Design And Implementation

Desired functionality:

• System clock

• High speed, low latency synchronization of

distributed processes

• Starting/stopping synchronization on-the-fly

• Detecting faults within synchronous service

• Detecting/processing overruns in user code

• Mechanism to control scheduler loading

• Compatiability with simulations and "real"

experiments

• Aid debugging

• Minimal hardware resources (clocks, interrupts,
etc.)

MCS/CTOS Course 45

Design And Implementation
II

Architecture"

• Maintain local information on each CPU 1-4, with
CPU 0 as master.

Attach ISR on CPU 0 to the auxiliary clock chip.

Choose an appropiate interrupt rate, and have
CPU 0 maintain system clock, which is stored in

global memory.

System clock can be accessed by user on all CPUs
via function call that extracts clock value from

global memory.

CPU 0 generates bus interrupt (using LM
interrupt). This serves as the synchronization
heartbeat.

!

ISRs on CPUs 1-4 respond to LM interrupt and

manage local synchronous process activations.

The ISR is the guts of the local synchronous

process handler (LSPH).

• Functions on CPUs 1-4 provide user with
interface to the LSPH.

I1

MCS/CTOS Course 46 _

Design And Implementation

P_, (the ISR on CPU 0)

• Responds to clock chip interrupts throughout
entire experiment.

• Maintains state flags for system clock on/ofF &

LM interrupt enabled/disabled.

• Time Units MCS-TU = 0.1ms. Time stored in

system clock is an integer number of MCS-TUs.

• Clock Update Rate: MCS-CUR -_ 0.9ms. Period

between clock chip interrupts.

Time Scale: MCS-TS, integer _ 1, set by user

(typically 1). Number of clock chip interrupts
between system clock updates and LM interrupts.

Thus, factor between real-time and system-time.

Time Phase: MCS-CP, integer __ 1, set by user

(typically 1). Number of clock chip interrupts
before the first ISR action.

• Small errors in system clock can occur due to

hardware limitations (see Tech Memo).

MCS/CTOS Course 47

P(D State Flags

LM

clock on

interrupts enabled
i

\

LM

clock on

interrupts disabled

!

LM

clock off

interrupts disabled 1

ll

MCS/CTOS Course 48

!

i

P_" Interrupts

P_

clockJchip
int ev 0.9s

/

VME
bus

FATAL
ERROR no

wait for activ'n

is clock on?
no

dec int cntr

is cntr O?

i
inc sys clock

L
int cntr ::

LM int enabled? J
no

LSPHs idle?

/ gen LM int

MCS/CTOS Course 49 /-,t_r-,t,-,_,--, rml

PO System Clock
W

real

scaled

sys

0.0

time I

time

time

0.9 1.8 2.7 4.5

J

t i

real

scaled

sys

0.0 0.9 1.8 2.7 3.6 4.5 5.4
timel I J I I i

timet Itime !

real

scaled

sys

0.0

time I

time I

time

0.9 1.8 2.7 3.6 4.5

MCS/CTOS Course 50

i

Design And Implementation

LSPH (Local Synchronous Process Handler)"

• Responds to LM interrupts and manages

synchronous processes on local CPU.

• A synchronous process (referenced by handle)
includes"

-- a synchronous task and synchronous

semaphore

-- an overrun task and overrun semaphore

-- a synchronization period and phase

-- a running flag

-- status registers and data (synchronization

enabled/disabled, disable pending and disable

time, overrun pending and overrun time)

• Contains a functional interface for user to

add/delete/control synchronous processes.

MCS/CTOS Course 51 _

LSPH

Two ways of attaching a synchronous process:

• More flexible, low-level

synchronous and overrun

user with taskSpawn with

(e.g., stack size, priority)

function"

tasks are spawned by

arbitrary parameters

semaphores are created by

user provides LSPH with these IDs,

flag, phase, and period

user gets synchronous handle

user with semCreate

running

I

|

SYNC_HANDLE syncProcAttach(

SEM_ID sync_sem, int sync_task_id,

SEM_ID or_sem, inz or_task_id,

B00L *flag, int phase, int period

I

mm

4

MCS/CTOS Course 52

i

LSPH

• Less flexible, high-level function"

- tasks are spawned using default parameters and
semaphores are created by LSPH

user minimally provides function to be spawned

as synchronous task, symbolic name, running
flag, phase, and period (LSPH uses default ar-

guments for task spawn and attaches a default

overrun task)

-- user may provide overrun function to be used

-- user may provide one argument to be passed to
the synchronous and overrun tasks

SYNC_HANDLE syncProcSpawn(

SEM_ID *pSync_sem,

char *pSync_name,

SEM_ID *p0r_sem,

char *p0r_name,

BOOL *flag, int

VOIDFUNCPTR pSync_func,

int sync_arg,

VOIDFUNCPTK p0r_func,

int or_arg,

phase, int period)

Synchronous (and

syncFuncName (

overrun) task called with arguments:

SEM_ID syncSem, BOOL ,rf,

int sysProcNum, int syncOptArg

MCS/CTOS Course 53 _

LSPH

I wait for activ'n I I LM interrupt

1
I flag active to Pe I

1
user ISR fct?

es

call user ISR

,/
Iconsider attached procs I 11

I flag idle to PO I
Using ISR Voids

J
Warranty

!

MCS/CTOS Course 54 _

LSPH: attached procs

proc enabled? [

dec cntr

is cntr O?

(r.f. OR

(overrun AND

sys time :> time)?

T)
pend

pend

disable sync proc

unblock ovr task

ovr pend, dis pend "-- F

disable

sys time
pend AND

_> pend time?

disable sync proc

ovr pend, dis pend :-- F

r.f. "-- T

unblock sync task

cntr "-- sync period

MCS/CTOS Course 55 ,.._u6ut__----x_

LSPH

LSPH

r.f. = false

wa it for
sync sem

sync
task
body

loop back

sync

wait for
ovr sere

ovr
task
body

possible
loop back

I
proci

o00

sync proc j

!

MCS/CTOS Course 56

LSPH

• Once a synchronous process is enabled, a detected
overrun disables it and unblocks the overrun task.

• Disabling and re-enabling can be done by the user.

• Overruns can be "forced" by the user.

• Disables and forced overruns are time-stamped.

• High level functions are provided to do task spawns
and semaphore creations for the user.

• Low level functions allow user much more flexibility

but with less hand-holding.

MCS/CTOS Course

Booting The Synchronous Service

These loads are performed by the CTOS System

Configuration File" I

• Want the clock and shut-down functions available

on all CPUs

-1 load syncSupport.o

• Want P_ on CPU 0

0 load syncMaster, o

• Want the LSPH on CPUs 1-4

1 load syncLib, o

2 load syncLib.o

3 load syncLib.o

4 load syncLib.o

J

MCS/CTOS Course S8

Booting The Synchronous Service

These spawns are performed by the CTOS System

Configuration File"

• Want PO Message Handler activated on CPU 0

0 task pO syncPOMsgHandler 50

\ • Want the LSPH Message Handlers activated on
CPUs 1-4

1 task Lsph_Svrl

2 task Lsph_Svr2

3 task Lsph_Svr3

4 task Lsph_Svr4

syncLsphMsgHandler 50

syncLsphMsgHandler 50

syncLsphMsgHandler 50

syncLsphMsgHandler 50

MCS/CTOS Course 59 ,.=_

Initializing The Synchronous Service

P_ and LSPHs initialize data structures in response

to MSG_CINIT. Additionally, the LSPHs notify PO, us-

ing MSG_SYNC_CPU_CHECK_IN, that they will be respond-

ing to LM interrupts.

i

PO requires that the phase and time-scale be set for

the system clock prior to turning it on. Messages

are used for this"

MSG_SYNC_CLK_RESET

MS G_SYNC_CLK_PHASE_SET (integer data)

MSG_SYNC_CLK_SCALE_SET (integer data)
!

Messages to PO are used for

changes of the system clock"

-- MSG_SYNC_CLK_ON

-- MSG_SYNC_CLK_PROC_ON

-- MSG_SYNC_CLK_PROC_ENB

the empowering state

MCS/CTOS Course 6O

m

m

!

Use With Message Passing

• Messages are used by CTOS to initialize the syn-
chronous service.

• The synchronous service uses messages to establish
communication between P_ and the LSPHs.

• Messages can be used between event handler tasks
to establish and control synchronous processes.

• Synchronous processes can be used to periodically

generate messages.

M CS/CTOS Course 61 _

Inter-processor Blocks (IPB)

VxWorks Semaphores do not work

processors on a VME chassis

between

i

While there are primitives (e.g. sysBusTas)

that can be used to construct semaphores,

they have disadvantages

They must be polled in order to block

the "taking" process, this could either
!

flood the bus, or if delays are used, in-

troduce unacceptable latencies

The polling process remains "ready"

than blocked

rather

MCS/CTOS Course 2 ,_"lrlr-'r"'-_¢_l

II

IPB Functions

IPBs attempt to eliminate these
utilizing the VxWorks semaphore
bus interrupts:

IPB_FLAG

IPB_STATE

ipbCreate(IPB_STATE init)

init - the initial

IPB_CLEARED

problems by
library and

state of the IPB

or IPB_BLOCKED

IPB_FLAG ipbTake(IPB_FLAG flag)

IPB_FLAG flag - the IPB flag to take

void ipbUnblock(IPB_FLAG

IPB_FLAG flag -

IPB_STATE state -

flag, IPB_STATE state)

the flag to Unblock

the state to leave the flag in

after unblocking. (IPB_CLEARED

or IPB_BLGCKED

MCS/CTOS Course

IPB Implementation

!1

Bus Interrupt

T

B Server

Unblocking Proc

J
_VxWorks

If Sem.

Blocked Proes.

CPU 1 CPU 2

!

!

!1

J

I

MCS/CTOS Course 64

!

CTOS/MCS
Section II1: MCS

I

1

i

I

i

Motion Control System - Introduction

Designed to be the interface to the

ulators of the CIRSSE testbed

manip-

Effort kicked off in

started in earnest in

MCS design team.

November, 1990

January 1991 by

and

the

• Basic functionality (with the exception of

a complete TG) in place by early July 1991

Continued effort to enhance and complete

MCS and complete its integration with the

CIRSSE Intelligent Control System

MCS/CTOS Course 1 _

I

Motion Control System - Features

I

Designed as a control server

testbed for control research

and and as a

I

Individual component interface designed

allow easy replacement for research.

to

• Developed on top of (and in

with) CTOS, thus providing

integration with the rest of

Integlligent Control System

conjunction

for seamless

the CIRSSE !

Provides a convenient, well understood frame-

work for testbed software development

!

M CS/CTOS Course 2 __

!

m

I

Motion

i

Control

i i

System - Components

A functioning Motion Control System is

configured by including several MCS

components and an application manager.

The application manager may function as the

driver for a particular experment. Or, it may

act as a "client interface" to systems outside

of the M CS, such as the Coordinator.

MCS/CTOS Course 3 _

Motion Control System- Components

MCS State Manager Monitors and maintains the state

of the Motion Control System. Provides the imple-
mentation of the interface between the application

and the other MCS components

Channel Drivers Low level interface between the hard-

ware that the MCS controls and higher levels of the

MCS Hierarchy. Maps MCS "slots" to I/O areas on
the hardware

I

Controllers Provides control for those MCS slots which

require it

Trajectory Generator Provides trajectory generation for
those slots which require it

Note that all of the components may be

allocated and distributed as the user wishes

using the CTOS Configuration mechanism.

MCS/CTOS Course

ii

Motion Control System - Components

State

Manager

Application or Client Interface

t t
I

Controller

I

.__._uma ___

L,_u_a''° I

,m,

1

lot Int.
J

Platform Channel

t
platLib

i.i

I

MCS/CTOS Course 5 _

Motion Control System- State Diagram

To interact with the

an application makes

MCS State Diagram"

Motion Control System,

transitions along the

i

Reserve or Unreserve

Shutdown

First Reserve

Reserved

Cold Not Active

Activate Res.

Last Unreserve

Restart

Res.

Estopped

ESTOP

Active

Disable

Motion

First Enable

Enable or Disable

!

II

MCS/CTOS Course 6

m

!

Motion Control System -

Messages

State

in

Manager

MS(3_PINIT

• Initializes data structures

• Reponds to registration by Channels,
and tGs. Channels describe slots

Controllers,

MSG_ATNIT

• Creates IPBs for each channel, then distributes
correct IPBs to the appropriate controllers

• Sends initial timing information to channesl an
TG

• Notifies MCS Components that they may estab-

lish their default configuration

MSG_AEXEC

• Responds

sages

to other State Manager/mcsLib mes-

\

MCS/CTOS Course

Motion Control System -

Messages

State Manager

MS(3_MCS_component_GET Returns a MCS_SLOT_LIST

filled with the TIDs of the requested component

(TG, CONTROLLER, CHANNEL)
i

MS(3_MCS_RATE_(3ET Returns a

filled with the rates at which the
voed

M CS_SLOT_LIST

slots are being ser-

MS(3_MCS_RESERVE Notes the, reservation of the
slot

M S (3 _M C S_A C TIVAT E

• Calibrates any reserved

• Ensures that power has

served slots

• Allows positioning of slots
(and are reserved)

slots that should be.

been enabled for all re-

that are capable of it

MCS/CTOS Course 8

Motion Control System -

Messages

State Manager

MSG_MCS_ENABLE

• If this is the first ENABLE, notify slot's TG,
CHANNEL and CONTROLLER that MCS is

moving into the Motion state

• Notify slot's CHANNEL that slot has been en-
abled

• Notify TG that slot has been enabled

MSG_MCS_D]:SABLE

• If this is the last DIABLE, notify slot's TG,
CHANNEL and CONTROLLER that MCS is

moving out of the Motion state

• Notify TG that slot has been disabled

• Notify slot's CHANNEL that slot has been dis-
abled

MSG_M CS_D EA C TIVAT E

Notifies active channels to disable power

MS(3_MCS_UNRESERVE

the slot

Notes the unreservation of

MCS/CTOS Course

Motion Control System - mcsLib

I

In general, an application does not explicitly

send messages to the MCS State Manager.

Rather, an application can use mcsLib

functions, which encapsulate the sending of

the appropriate messages to the State

Manager.

1

!

!

MCS/CTOS Course I0 ,__.._

I

Motion Control System

i

- mcsLib

i

MCS_STATUS mcsSlotReserve(TID_TYPE callTid, int slot);

MCS_STATUS mcsSlotUnreserve(TID_TYPE callTid, int slot);

MCS_STATUS mcsReservationsActivate(TID_TYPE callTid);

MCS_STATUS mcsReservationsDeactivate(TID_TYPE callTid) ;

MCS_STATUS mcsSlotEnable(TID_TYPE callTid, int slot);

MCS_STATUS mcsSlotDisable(TID_TYPE callTid, int slot);

TID_TYPE callTid

int slo%

- TID of the calling task

- slot of interest

MCS/CTOS Course

Motion Control System - mcsLib

The mcsLib functions that return information

obtained from the State Manager use a

specially defined data type called an

M CS_SLOT_LIST"

typedef

TID_TYPE

INT

INT

KEAL

B00L

union {

tid[MCS_MAX_SLOTS];

period[MCS_MAX_SLOTS];

phase[MCS_MAX_SLOTS];

position[MCS_MAX_SLOTS];

booI[MCS_MAX_SLOTS];

MCS_SLOT_WOKD slotWord[MCS_MAX_SLOTS];

MCS_STATUS status[MCS_MAX_SLOTS];

} MCS_SLOT_LIST;

l

MCS/CTOS Course 12

i

Motion Control System- mcsLib

MCS_STATUS mcsChannelGet(TID_TYPE callTid,

MCS_SLOT_LIST *slotList);

MCS_STATUS mcsControllerGet(TID_TYPE callTid,

MCS_SLOT_LIST _slotList);

MCS_STATUS mcsTGGet(TID_TYPE callTid,

MCS_SLOTS_LIST *slotList);

TID_TYPE

MCS_SLOT_LIST

callTid - TID of the calling task

*slotList - Pointer to storage for a

or NULL

list

MCS/CTOS Course 13

MCS Synchronous Interface

ISEM

4.5 ms

controller

wait _--

read

trajectory gen

wait-_--f-/

read KnotT- I

3_':EM- write'Setpt I I

channel driver

I I wait _'" I "'/"" ""4"s'ms_
!- read T I

input Pos
_: iw_itepo,i I hardware

,, II ,,'"l- release]

shared mem

data flow

...... sync

1

!

!

i

MCS/CTOS Course 14 r--r_r"qr'.r--_l

I

Channel Driver Overview

• Purpose of the Channel Drivers

• Channel Driver Message Handler

• Channel Driver Synchronous Task

Overrun Task

and

• Channel Driver Interfaces

Current Implementation

and chanPlat

of chanPuma

• Future Developments and Additions

MCS/CTOS Course 15 _

Purpose of the Channel Drivers

• interface between hardware and controllers

Handles the

control

synchronization for discrete

• Handles error conditions

• Creates a device independent layer

(for controller interface)

!

I

i

MCS/CTOS Course 16

I

i

Channel Driver Message Handler

• Purpose/Features

Handles asynchronous

state manager

messages from

Transfers

sync task

message information to

- Handles failure of state manager

- Initializes data and hardware

MCS/CTOS Course 17

Channel Driver Messages
I

• PINIT

- Initialize data

-- Register joints

• TIME_SET (during AINIT)

Set channel driver period and phase

!

• IPB_SET (during AINIT)

Set channel

block flag

driver interprocessor

MCS/CTOS Course 18

Channel Driver Messages (cont.)

• DEFAULT_CONFIG (during AINIT)

-- Check hardware

-- Spawn sync task and overrun task

-- Install channel driver

• CONFIG_GET/CONFIG_SET (7)

-- Not Defined

\

MCS/CTOS Course 19

Channel Driver Messages (cont.)
ll

• CALIBRATE (one time only)

Turn on high power

(for joint channel drivers)

i

-- Calibrate hardware

PREPARE_MOTION

(transition into activate state)

-- Prepare robot for motion state

!

Turn on high power if not

(for joint channel drivers)

already on
|

-- Update shared memory

u

MCS/CTOS Course 20

|

Channel Driver Messages (cont.)

• POSITION (in activate state)

-- Position the robot using hardware

-- Not supported by all hardware

-- Update shared memory

MCS/CTOS Course 21

Channel Driver Messages (cont.)

• MOTION (transition into motion state)

-- Enable clocking of sync process

Joints do not

is received

move until an ENABLE

• ENABLE (enable selected joint for motion)

-- Enable joint for motion !

-- Brakes off for selected joint

- One at a time

I

MCS/CTOS Course 22 _.._

i

Channel

I

Driver Messages (cont.)

• DISABLE (disable selected joint)

- Disable joint motion

- Brakes on for selected joint

- One at a time

• NO_MOTION (transition out of motion state)

- Disable clocking of sync process

MCS/CTOS Course

Channel Driver Messages (cont.)

DEACTIVATE

(transition out of activate state)

Turn off

(for joint

high power

channel drivers)

i

!

MCS/CTOS Course 24

Channel Driver Messages (cont.)

• ESTOP (any time after AEXEC)

-- Software ESTOP

-- Stop all joints

-- Turn off high power

• KILL (any time after AEXEC)

- Remove channel driver

MCS/CTOS Course 25 _

Channel Driver Synchronous Task
I

• Purpose/Features

-- Gathers data from hardware

Outputs data to hardware

synchronous fashion

in a

Handles hardware to software conver-

sions (encoder ticks to radians, etc.)

Releases data driven tasks when

is available (data sync mode)

data

Handles controller data

(ex. torque not fresh)

write delays

Alerts state manager

state transitions

of "forced"

MCS/CTOS Course 26

i

Channel Driver Synchronous Task

\ • Purpose/Features (cont.)

Stops joints before they

limits

hit hardware

-- Checks for ESTOP

Stops robot when

or hardware fails

an overrun occurs

MCS/CTOS Course 27 _

Synchronous Task Code

(1) One time initialization.

(2) Wait for P0 to release.

(3) Read torque data from shared

(4) Check torque data freshness.

- If not fresh then decrement

- If fresh then reset count.

- If count has expired set

(B) Clip torque data (optional).

(6) Convert torque data from Nm to

specific values.

(7) Output torque vector to robot.

(8) Read joint encoder positions.

(9) Convert joint encoder counts to

(10) Write position data into shared

(11) Release ipb for controllers.

memory.

count.

disable pending.

hardware

radians/mm.

memory.

1

|

I

MCS/CTOS Course 28

i

I

|

L , , i ii

Synchronous Task Code (cont.)

(12)

(13)

Check for joint limits.

- If joint at limit, set

Check for enable/disable

- Requested by

- Requested by

disable pending.

transitions.

message handler,

above code.

forced

(14) Check for ESTOP.

(15) Notify state manager of

(16) Loop back to wait (2).

or

transitions.

MCS/CTOS Course 29

Overrun Task Code

(1)

(2)

(3)

(4)

(S)

(6)

(7)

(8)

Issue a taskLock.

Stop all robot joints.

Turn off high power.

Suspend synchronous

Check if overrun was

Send message to state

Issue taskUnlock.

Halt.

task.

forced by

manager.

sync task.

I

I

MCS/CTOS Course 3O

i

I

i

Channel Driver Interfaces

• Channel to Hardware

-- Calls to pumaLib and platLib

• Channel to Controller

Reads and

directly

writes to shared memory

-- Controller calls chanLib to access data

MCS/CTOS Course 31

Current Implementation

• chanPuma

One message handler

drivers (reentrant)

for both i

-- One sync task (spawned twice)

All joints on one driver

same time period

must be at

• chanPlat

!

-- One channel driver for both platforms

All joints on both

at same period

platforms m ust be

MCS/CTOS Course 32

m

m

i

Current Implementation (cont.)

i

• Options

-- Synchronous task priority

- Overrun task priority

-- Synchronous Period and Phase

-- ipb Flag to release

Number

disable

of torque overruns before

-- Torque clipping

MCS/CTOS Course 33

Future Developments and Additions
I

• Split chanPlat

channel drivers

driver into right and left

I

Ability to enable more than one joint

at a time

• Force torque sensor channel driver

• Gripper channel driver

!

• Driver for the GCA arm

MCS/CTOS Course 34

I

MCS Controllers

Overview:

• The Message Handler

• The Synchronous Task

• The Controller / Channel Interface

• The Controller / Trajectory

Interface

Generator

• Putting Together the Pieces

• Future Developments

MCS/CTOS Course 35

The Message Handler

The Controller Message Handler Must

Respond to the Following Messages:

• MSG_PINIT

I

• MSG_M CS_IPB_SET

• MSG_M CS_TIM E_SET

!

• M S G_M CS_D EFAU LT_CO N FIG

• MSG_MCS_MOTION

• MSG_M CS_NO_MOTION

MCS/CTOS Course 38

The Message Handler (cont.)

• MSG_PINIT

-- Register with the State Manager

-- Example:

/*

int

int

Define List of Joints to Control

jointList = {1,2,3,10,ii,12};

numJoints - 6;

,/

/* Register with State

mcsControllerRegister (

Manager */

myTid,

jointList,

numJoints) ;

MCS/CTOS Course 37 r"rte-,r-_.--w_l

The Message Handler (cont.)
1

• MSG_MCSIPB_SET

- Receive an IPB flag via message data
I

-- Exa mple

/* Get IPB Flag */

myIpbFlag = (IPB FLAG) (msg->data) ;

|

MCS/CTOS Course 38 _._

I

i

The Message Handler (cont.)

• MSG_M CS_TIM E_SET

-- Receive period via message data

-- Example:

\

/* Cast Message Data to Structure

myTimelnfo =

(MCS_SLOT_TIME_TYPE *)(msg->data);

,/

/* Get Period ,/

j = jointList[O] ;

period =

(myTimeInf o->slotPeriodInfo), period [j] ;

/* Convert Period to Seconds */

periodInSecs = (period • MCS_CUP) / 1000;

MCS/CTOS Course 39

The Message Handler (cont.)

• MS G_M CS_D EFAU LT_CO N FIG

-- Read files I

-- Initialize data structures

-- Spawn the synchronous task

• MSG_MCS_MOTION

- Get the current robot position

!

-- Example

/* Initialize interpLib */

interpLibInit (numJoints,

jointList,

initPos) ;

MCS/CTOS Course 40 r-s, ,,,

i

The Message Handler (cont.)

inn i

Future Messages Will Include:

• MSG_M CS_CON FIG_GET

• MSG_M CS_CON FIG_SET

• MSG_MCS_ENABLE / DISABLE

• MSG_M CS_KILL

MCS/CTOS Course 41

The Synchronous Task

Important Issues:

• Blocking on an IPB flag

• Data Overruns

• The Control Structure

!

MCS/CTOS Course 42

The

l

Synchronous Task (cont.)

Controllel

Read Position
Write Torque

Get Setpoint
Calc. Torque

__B_[ock_

Channel

I
Get Torque
Put Torque

Get Pos.
Put Pos.

IPB Unblock

Check Limits

Get Torque
Put Torque

Get Pos.
Put Pos.

IPB Unblock

Check Limits

P0

5.4ms

MCS/CTOS Course 43

The Synchronous Task- Data Overrun
III

Controlle_

Read Position

Calc. Torque

Write Torque

MCS/CTOS Course

Channel

i
Get Torque
Put Torque

Get Pos.
Put Pos.

IPB Unblock

Check Limits

Get Torque
Put Torque

Get Pos.
Put Pos.

IPB Unblock

Check Limits

44

P0

!

5.4ms

I

!

I

I !

The Synchronous Task (cont.)

• Blocking on an IPB flag

-- Example:

while (TRUE) {

/* Wait for Channel ,/

ipbTake(mylpbFlag);

} /, end of while */

MCS/CTOS Course 45

I

The Synchronous Task (cont.)
II

• Data Overruns

A data overrun occurs when the

tions or torques are not FRESH

posi- 1

If a torque overrun

uses the old torque

occurs, the

value

channel

The channel will allow N data

before the joint is disabled

overruns

!

i

|

MCS/CTOS Course 46

i

I

The Synchronous Task (cont.)

• The Control Structure

- The control loop must:

• block on an IPB flag

• read positions and write torques

• get setpoints

• compute torque

The order of these operations is a trade-

off between computational speed and

lag

MCS/CTOS Course 47 ,,_J_

The Controller / Channel Interface

Controllers read positions and write torques

using chanLib.

I

• Reading positions

chanScalarRead(int joint,

float *pos,

short mode);

l

chanVectorRead (int numJoints,

int jointList [],

float posVector [],

short mode) ;

!

I

Position units

(prismatic)

are rad (revolute) and

MCS/CTOS Course 48

mm

]

I

The Controller / Channel Interface (cont.)

• Modes for Reading Positions

- CHAN_CONTROLLER

- CHAN_OBSERVER

• Writing Torques

chanScalarWrite (int joint,

float trq) ;

chanVectorWrite (int numJoints,

int jointList [],

float trqVector []);

• Torque units are Nm

MCS/CTOS Course 49

The Controller / Channel Interface (cont.)
I

• Checking for Enable / Disable Transitions

chanJointState(int joint);
I

• chanLib Return Codes

- CHAN_OKAY

CHAN_ERROR

CHAN_DISABLED

CHAN_NOTFRESH

CHAN_OVERRUN

I

-- CHAN_ENABLED

MCS/CTOS Course

The Controller / Trajectory

Interface

Generator

Controllers get setpoints using interpLib.

\

interpScalarRead (int joint,

float ,pos,

float ,vel,

float ,acc,

short dataSelect);

interpVectorRead (int

int

float

float

float

short

numJoints,

jointList [],

posVector [] ,

velVector [] ,

accVector [] ,

dataSelect) ;

MCS/CTOS Course 51

Putting Together the Pieces

Or, How To Write An MCS Controller

Step 1: Write a Message Handler

Step 2: Write a Sync Task That:

a) Blocks on an IPB Flag

b) Writes Torques

c) Keads Positions

!

d) Gets Setpoints

e) Computes Torques (Control Algorithm)

MCS/CTOS Course 52

Putting Together

i

the Pieces (cont.)

Example: Synchronous Task

static void

ctrlPid(TID TYPE myTid

{
float trq[NUM_JOINTS] ;

float pos k[NUM_JOINTS];

float pos d [NUM JOINTS];

float vel d[NUM_JOINTS];

/* torques

/* current

/* desired

/* desired

,/
position */

position */

velocity */

a)

b)

c)

while (TRUE)

{
/* wait for channel

ipbTake (myIpbFlag) ;

to unblock */

/* write torques */

chanVe ct orWrite (NUM_ J0 INTS,

jointList,

trq);

/* read positions */

chanVectorRead (NUM_JOINTS,

jointList,

posk,

CHAN_CONTROLLER) ;

MCS/CTOS Course 53

Putting Together the Pieces (cont.)
II

d) /* get position and velocity setpoints

interpVectorRead(NUM_JOINTS,

jointList,

pos_d,

vel_d,

NULL,

INTERP_POS_VEL);

,/

I

e) /***** insert control algorithm here *****/

}
} /* end of while */

/* end of ctrlPid() ,/

I

|

MCS/CTOS Course 54

i

Future

i

Developments

i

• Trans-Channel Controllers

-- Requires ANDing IPB flags

-- Servo rate limited by slowest channel

• Swapping Controllers

Better Algorithms

Currently available:

Gravity compensation

PID with integral windup compensation

MCS/CTOS Course

MCS Client Interface

MCS Client Interface will provide access to MCS
functions for

-- higher levels of "intelligent machine"

- experiments coordinating vision _ motion

Client

functions
Interface will be implemented

these C functions will exchange
MCS

library will be available on VME

Library will

-- motion

-- gripper

-- access to

-- transform

-- trajectory

as library of C

messages with

and Suns

include

commands

commands

internal sensors

operations

generation functions

• First application will be a teach pendant

I

1

MCS/CTOS Course 56 r-lnr_-,---,,-- 1

I

CTOS/MCS

Section IV: Case Study

\

I

1

I

Case Study Master/Slave Control

vxO

vxl

vx2

vx3

vx4

CTOS Support Tasks

chanRPmaDrv

I I

chanLPmaDrv

ctrlRGrav
ctrlPid5

tgen
Application Manager

MCS/CTOS Course

I

Case Study Master/Slave Control

I

• Configuration File

• Application Code
i

• "Trajectory Generator" Code

• Controller Code

- Gravity Compensation
!

-- PID

I

MCS/CTOS Course

CTOS/MCS

Section V: Excercises

II

II

I

11

'l

II

CTOS/MCS Course Exercises

L

",%.

1. VxWorks "Print String" Function

• Lessons

- using Imake to compile

- working with bare VxWorks

• Procedure

(a) write fnnction that prints "From task xx: 'string' "

(b) function prototype: void xyzPrtSrr (TID_TYPE id, const char *s)

(c) cop)' header file/home/lefebvre/vxworks/bootstrap/course/ex.h and change

function prototypes to match your function names

(d) create Imakefile - be sure to include the following directories

-I/home/lefebvre/vxworks/boot s_rap

-I/home/watson/cirsse/mcs/sync

(e) run cmkmf, then compile your fl,l,ction

(f) run under VxWorks:

i. cd "/home/yourdir/"

ii. ld < xyzPrtStr.o

iii. xyzPrtStr (123, "Hello World")

2. Simple Event Handler Task

* Lessons

- format of event handler function

- CTOS bootstrap phases

- building a config file

• Procedure

(a) you will write an event handler [,motion for a task with symbolic name

'Team_n' - where '11' is your team number, e.g. Team_2

(b) the task is to report when it receiv,.s the bootstrap phase messages MSG_PINIT,

MSG_AINIT, & MSG__,EXEC, e.g. "From task xx: Team 1 received PINIT"

(c) build a User Config File for entir,, class

(d) use ctconfig to point to your config file

(e) use vxboot to change to CTOS \:xWorks kernel

(f) run the application

I

Ri

il

If

E

|

3. Send Messages to Other Tasks

• Lessons

- finding TIDs of other tasks

- saving data between calls to EH function

- building & sending messages

• Procedure

(a) add to event handler function of exercise 2 to send messages to the other
teams

(b) during AINIT: find TIDs of other teams' event handler functions via their

symbolic names (i.e. use msgTidQuery), print out the names & TIDs

(c) during AEXEC: send different MSG_STRING message to each team

(d) be prepared to print out received messages

(e) run it

4. Set up Synchronous Task

• Lessons

- creating a synchronous process

- connecting to synchronous services

• Procedure

(a) write synchronous task that posts a MSG_STRING message to your event
handler function

i. use prototype: void xyzSyncTask(), and put in separate file

ii. create global variables for: E]-I task's TID, sync process semaphore &

running flag

iii. sync task loops forever

iv. remember to set rumfing flag = FALSE and to take semaphore at begining

of loop

(b) add to event handler function of exercise a to set up the synchronous process

i. use syncProcSpawn in PINIT to create sync process

ii. use 2000 ticks for clock rate (l.,'_ seconds)

iii. use syncProcEnb in AEXE(' ,.o start it

(c) update config file 1;o load sync task

(d) add following lines to config file t(, create Application Executive task that

starts clock

0 load /home/lefebvre/vxworks/bootstrap/course/app_exec.o

0 task App_Exec app_exec 50

(e) compile everything & run it

2

m

5. Communicate with Synchronous "['ask

• Lessons

- communication between synchrono_ts & non-synchronous processes

• Procedure

(a) Application Executive will periodically send MSG_START_SYNCTASK &

MSG_STOP_SYNCTASK messages

(b) your event handler task must communicate with your synchronous process to

start/stop posting messages

i. use syncProcDis to stop it

ii. use syncProcEnb to restart it

iii. print message to report start/stop

(c) compile everything & rua it

I

i

!

|

!

3

!

ex. h Wed Jul 17 09:02:36 1991

/*

Header file for Exercises - ex.h

,/

#include "stdioLib.h"

#include "string.h"

#include "logLib.h"

#include "msgLib.h"

#include "syncLib. h"

include files */

/* function prototypes

void printString (TID TYPE t, const char *s) ;

int userfcn (TfD_TYPE myTid, MSG_TYPE *msg) ;

void syncTask () ;

.... */

II

l

I

11

II

strprt, c

/*

TEAM I Exercise 1

*/

#include "ex.h"

Wed Jul 17 07:56:04 1991

- strprt, c

printString

void printString (TID_TYPE t, const char *s)

{

printf ("From task %x: '%s'\n", t, s) ;

)

\

ex2.c Wed Jul 17 08:00:05 1991

/*

TEAM 1 Event Handler Function

*/

#include "ex.h"

- ex2.c

n

userfcn - Event Handler Function for Exercise 2

int userfcn (TID_TYPE myTid, MSG TYPE "msg)

{
switch (msg->command)

{
case MSG PINIT:

printS_ring (myTid, "Team I received PINIT") ;

break ;

case MSG AINIT:

printS_ring -(myTid, "Team 1 received AINIT") ;

break ;

case MSG AEXEC:

printS_ring (myTid, "Team 1 received AEXEC") ;

break ;

}
return (msgDefaultProc (myTid, msg)) ;

}

!

|

l

|

ex3.c Wed Jul 17 07:55:34 1991

/*

TEAM 1 Event Handler Function

*/

#include "ex.h"

- exS.c

userfcn - Event Handler Function for Exercise 3

int userfcn (TID TYPE myTid, MSG_TYPE *msg)

{
static TID TYPE tl, t2, t3, t4 ;

static chat msg1[] = ("Hello team 1 from myself"} ;

static char msg2 [20] ;

char *msg3 ;

switch (msg->command)

(
case MSG PINIT:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received PINIT") ;

/* break to get default processing */

break ;

case MSG AINIT:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received AINIT") ;

/* find TIDs of other tasks */

printf ("Team l's TID = %x\n", tl = msgTidQuery(myTid, "Team_l")) ;

printf ("Team 2's TID = %x\n", t2 = msgTidQuery(myTid, "Team_2")) ;

printf ("Team 3's TID = %x\n", t3 = msgTidQuery(myTid, "Team_3")) ;

printf ("Team 4's TID = %x\n", t4 = msgTidQuery(myTid, "Team 4")) ;

/* break to get default processing */

break ;

case MSG AEXEC:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received AEXEC") ;

/* send msg to other teams */

msgBuildSend (tl, myTid, MSG_STRING,

msgl, strlen(msgl),

MF STANDARD) ;

strcpy (msg2, "Hello team 2 from team I") ;

msgBuildSend (t2, myTid, MSG_STRING,

msg2, strlen(msg2),

MF STANDARD) ;

msg3 = (char *) malloc (25) ;

strcpy (msg3, "Hello team 3 from team i") ;

msgBuildSend (t3, myTid, MSG_STRING,

msg3, strlen(msg3),

MF STANDARD) ;

msgBuildSend (t4, myTid, MSG_STRING,

ex3.c Wed Jul 17 07:55:34 1991

"Hello team 4 from team l", 25,

ME STANDARD) ;

/* break to get default processing */

break ;

case MSG STRING:

/* report received string */

printf ("Task %x received string from Task %x: '%s'\n",

myTid, msg->source, (char *)msg->data) ;

/* break to get default processing */

break ;

case MSG INTEGER:

/* report received string */

printf ("Task %x received integer from Task %x: %i\n",

myTid, msg->source, (int)msg->data) ;

/* break to get default processing

break ;

}

return (msgDefaultProc (myTid, msg)) ;

)

*/

I

!

|

I

ex4.c Wed Jul 17 10:55:15 1991

/*

TEAM 1 Event Handler Function

*/

#include "ex.h"

extern TID_TYPE parent ;

extern SEM__ID semSync ;

extern BOOL runSync ;

- ex4.c

/* global TID of parent EH function */

/* global vats needed by sync process */

\

userfcn - Event Handler Function for Exercise 4

int userfcn (TID_TYPE myTid, MSG_TYPE *msg)

{
static TID TYPE tl, t2, t3, t4 ;

static SYN_ HANDLE hSync ;

static char msgl[] = {"Hello team 1 from myself"} ;

static char msg2 [40] ;

char *msg3 ;

switch (msg->command)

{
case MSG PINIT:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received PINIT") ;

/* set up synchronous task */

parent = myTid ;

hSync = syncProcSpawn (&semSync, syncTask, "Sync_Task", 0,

NULL, NULL, "", SYNC OVR MILD,

&runSync, i, 2000) ;

if (hSync == ERROR)

{

printf ("ERROR: Could not create Sync Task\n") ;

break ;

}

/* break to get default processing */

break ;

case MSG AINIT:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received AINIT") ;

/* find TIDs of other tasks */

printf ("Team l's TID = %xkn", tl = msgTidQuery(myTid, "Team I")) ;

printf ("Team 2's TID = %xkn", t2 -- msgTidQuery(myTid, "Team_2")) ;

printf ("Team 3's TID = %xkn", t3 = msgTidQuery(myTid, "Team 3")) ;

printf ("Team 4's TID = %x\n", t4 = msgTidQuery(myTid, "Team_4")) ;

/* break to get default processing */

break ;

case MSG AEXEC:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received AEXEC") ;

ex4.c Wed Jul 17 10:55:15 1991

/* send msg to other teams */

msgBuildSend (tl, myTid, MSG_STRING,

msg!, strlen(msgl),

MF STANDARD) ;

strcpy (msg2, "Hello team 2 from team i") ;

msgBuildSe_d (t2, myTid, MSG_STRING,

msg2, strlen(msg2),

MF_STANDARD) ;

msg3 m (char *) malloc (25) ;

strcpy (msg3, "Hello team 3 from team i") ;

msgBuildSend (t3, myTid, MSG STRING,

msg3, strlen(msg3),

MF STANDARD) ;

msgBuildSend (t4, myTid, MSG_STRING,

"Hello team 4 from team I", 25,

MF_STANDARD) ;

/* enable Sync Task */

if (syncProcEnb (hSync) == ERROR)

printf("ERROR: could not enable Sync Task, hSync=%x\n", hSync) ;

else

printf ("Sync Task was Enabled\n") ;

/* break to get default processing */

break ;

U

!

case MSG STRING:

/* report received string */

printf ("Task %x received string from Task %x: '%s'\n",

myTid, msg->source, (char *)msg->data) ;

/* break to get default processing */

break ;

!

case MSG INTEGER:

/* report received string */

printf ("Task %x received integer from Task %x: %i\n",

myTid, msg->source, (int)msg->data) ;

/* break to get default processing

break ;

)

return (msgDefaultProc (myTid, msg)) ;

}

|

l

!

|

sync.c Wed Jul 17 11:20:53 1991

/*

TEAM i Synchronous Task

#include "ex.h"

TID TYPE parent ;

SEM ID semSync ;

BOOL runSync = FALSE ;

- sync.c

/* global TID of parent EH function */

/* global vats needed by sync process */

syncTask

void syncTask ()

{

MSG_TYPE msg ;

char s [80] ;

int i = 1 ;

while (TRUE)

{

/* block on semaphore */

runSync = FALSE ;

if (semTake (semSync, WAIT_FOKEVER) == ERROR)

logMsg("*** ERROR: Invalid semaphore ***\n") ;

/* create string */

sprintf (s, "Hi daddy, msg #%i", i++) ;

/* create message */

msgBuild (&msg, parent, parent, MSG_STRING, s, strlen(s), MF_STANDARD);

/* post message

msgPost (&msg) ;

}

./

ex5.c

/*

TEAM 1 Event Handler Function

*/

#include "ex.h"

extern TID_TYPE parent ;

extern SEM ID semSync ;

extern BOOT runSync ;

Wed Jul 17 10:59:27 1991

- ex5.c

/* global TID of parent EH function */

/* global vars needed by sync process */

userfcn - Event Handler Function for Exercise 5

int userfcn (TID TYPE myTid, MSG__TYPE _msg)

{

static TID TYPE tl, t2, t3, t4 ;

static SYNC_HANDLE hSync ;

static char msgl [] = ["Hello team 1 from myself"} ;

static char msg2 [40] ;

char *msg3 ;

switch (msg->command)

{
case MSG PINIT:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received PINIT") ;

/* set up synchronous task */

parent = myTid ;

hSync = syncProcSpawn (&semSync, syncTask, "Sync_Task", 0,

NULL, NULL,, SYNC_OVR_MILD,

&runSync, I, 2000) ;

if (hSync == ERROR)

{

printf ("ERROR: Could not create Sync Task\n") ;

break ;

}

!

!

/* break to get default processing */

break ;

case MSG AINIT:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received AINIT") ;

/* find TIDs of other tasks */

printf ("Team l's TID = %x\n", tl = msgTidQuery(myTid, "Team i")) ;

printf ("Team 2's TID = %x\n", t2 = msgTidQuery(myTid, "Team 2")) ;

printf ("Team 3's TID = %xkn", t3 = msgTidQuery(myTid, "Team 3")) ;

printf ("Team 4's TID = %xkn", t4 = msgTidQuery(myTid, "Team 4")) ;

/* break to get default processing */

break ;

|

case MSG AEXEC:

/* report receiving bootstrap message */

printString (myTid, "Team 1 received AEXEC") ;

!

ex5.c Wed Jul 17 10:59:27 1991

/* send msg to other teams */

msgBuildSend (tl, myTid, MSG STRING,

msgl, strlen(msgl),

MF STANDARD) ;

strcpy (msg2, "Hello team 2 from team i") ;

msgBuildSedd (t2, myTid, MSG_STRING,

msg2, strlen(msg2),

MF STANDARD) ;

msg3 = (char *) malloc (25) ;

strcpy (msg3, "Hello team 3 from team I") ;

msgBuildSend (t3, myTid, MSG STRING,

msg3, strlen(m_g3),

MF STANDARD) ;

msgBuildSend (t4, myTid, MSG_STRING,

"Hello team 4 from team I", 25,

MF STANDARD) ;

/* enable Sync Task */

if (syncProcEnb (hSync) == ERROR)

printf("ERROR: could not enable Sync Task, hSync=%x\n '', hSync) ;

else

printf ("Sync Task was Enabled\n") ;

/* break to get default processing */

break ;

case MSG STRING:

/* report received string */

printf ("Task %x received string from Task %x: '%s'\n",

myTid, msg->source, (char *)msg->data) ;

/* break to get default processing */

break ;

case MSG INTEGER:

/* report received string */

printf ("Task %x received integer from Task %x: %i\n",

myTid, msg->source, (int)msg->data) ;

/* break to get default processing */

break ;

case MSG START SYNCTASK:

/* start Sy_c Task */

if (syncProcEnb (hSync) == ERROR)

printf("ERROR: could not enable Sync Task\n") ;

else

printf ("Sync Task was Enabledkn"J ;

/* break to get default processing */

break ;

case MSG STOP SYNCTASK:

/* stop Sync Task */

if (syncProcDis (hSync) == ERROR)

printf("ERROR: could not disable Sync Task\n") ;

else

ex5.c Wed Jul 17 10:59:27 1991

printf ("Sync Task was Disabled\n") ;

/* break to get default processing

break ;

)

return (msgDefaultProc (myTid, msg)) ;

}

./

!

|

Imakefile Wed Jul 17 10:59:47 1991

/* Imakefile for CTOS/MCS Course Exercises */

CPPFLAGS += -I/home/lefebvre/vxworks/bootstrap

AllTarget(strprt.o ex5.o sync.o app_exec.o)

VxWorksBinTarget(strprt.o, ex.h,)

VxWorksBinTarget(ex5.o , ex.h,)

VxWorksBinTarget(sync.o , ex.h,)

VxWorksBinTarget(app_exec.o, ,)

-I/home/watson/cirsse/mcs/sync

\

course_config Wed Jul 17 11:14:10 1991 1

User Configuration File for CTOS/MCS Course

load & start Application Executive

0 load /home/lefebvre/vxworks/bootstrap/course/app_exec.o

0 task App_Exec app_exec 50

-i load /home/lefebvre/vxworks/bootstrap/course/strprt.o

-i load /home/lefebvre/vxworks/bootstrap/course/sync.o

1 load

2 load

3 load

4 load

/home/lefebvre/vxworks/bootstrap/course/ex5.o

/home/lefebvre/vxworks/bootstrap/course/ex5.o

/home/lefebvre/vxworks/bootstrap/course/ex5.o

/home/lefebvre/vxworks/bootstrap/course/ex5.o

load & start each team's event handler task

#i load /home/lefebvre/vxworks/bootstrap/course/team I.o

1 task Team 1 userfcn 150
N

#2 load

2 task
/home/lefebvre/vxworks/bootstrap/course/team_2.o

Team 2 userfcn 150

#3 load

3 task

/home/lefebvre/vxworks/bootstrap/course/team_3.o

Team 3 userfcn 150

#4 load

4 task
/home/lefebvre/vxworks/bootstrap/course/team__4.o

Team 4 userfcn 150

W

app_exec, c Wed Jul 17 11:10:06 1991

*

Application Executive for CTOS/MCS Course

*/

#include "stdioLib.h"

#include "logLib.h"

#include "msgLib.h"

#include "syncLib.h"

- aop exec.c

app_exec - Application Executive

int app_exec (TID_TYPE myTid, MSG_TYPE *msg)

!

TID_TYPE p0Tid ;

MSG_TYPE bmsg ;

switch (msg->command)

{
case MSG CINIT:

/* start synchronous clock */

if ((p0Tid = msgTidQuery(myTid,"p0"); == 0)

{

msgErrorLog(myTid,"App_Exec ERROR: Couldn't find P0\n") ;

break ;

)

if (msgBuildSend (p0Tid, myTid, MSG_SYNC CLK_RESET,

NULL, MS_NONE, MF_STANDARD) != OK)

{

msgErrorLog(myTid, "Appl Exec ERROR: could not sync clock") ;

break ;

}

if (msgBuildSend (p0Tid, myTid, MSG_SYNC_CLK_PROC_ON,

NULL, MS_NONE, MF STANDARD) != OK)

(

msgErrorLog(myTid, "App_Exec ERROR: no clock on") ;

break ;

}

/* break to get default processing */

break ;

case MSG AEXEC:

/* pe_iodically send START/STOP SYNCTASK messages

msgBuild (&bmsg, 0, myTid, MSG_START_SYNCTASK,

NULL, MS_NONE, MF_STANDARD) ;

FOREVER

{
taskDelay (60"15) ;

bmsg.command = MSG STOP $YNCTASK ;

msgBroadcast (&bmsg, MB CHASSIS) ;

printf("Broadcasting STOP Sync Task\n") ;

taskDelay (60"15) ;

bmsg.command = MSG START SYNCTASK ;

msgBroadcast (&bmsg, MB__HASSIS) ;

printf("Broadcasting START Sync Task\n") ;

}
break ;

app_exec.c wed Jul 17 11:10:06 1991

return (msgDefaultProc (myTid, msg)) ;

)

2

!

!

!

CTOS/MCS

Section VI: Supplement

i

1

I

]

CIRSSE Technical Memorandum

To: CIRSSE

From: Keith R. Fieldhouse

Group: All

Title: VxWorks at CIRSSE

Date: April, 1991

Number: 3 vers. 1

1 Introduction

VxWorks is the real time operating system and development environment used at CIRSSE for

motion control and Datacube based vision experimentation. VxWorks runs on VME based Sin-

gle Board Computers (SBCs). The system was developed by Wind River Systems of Alameda,
California.

This document is intended as an introduction to VxWorks for those members of CIRSSE who

will be doing development on our real time systems.

An important characteristic of VxWorks is that when several SBCs are installed on one back-

plane, they are configured as an Internet subnet with their own addresses and node names, much

as the CIRSSE Sun systems are also collected into a subnet. Tables 1 and 2 show the two VME

cage subnetworks here at CIRSSE. Note that CPU 0 on each cage has two names, indicating its

role as the gateway between the cage's backplane network and the C[RSSE thinwire (coaxial cable)
network.

The existence of each SBC as a node on CIRSSE's network allows one to rlogin to any of the

nodes. Given the nature of VxWorks, only one active session (either via rlog±n or attached to

the console) can be allowed per SBC at a given time. Care should be taken when using rlogin to

attach to a board, as other users may (inadvertently or not) reboot the cage from beneath you. In

general it is best to be in the lab when using a one of the VME cages. You should always be in the

lab when you are actually causing a manipulator to move.

Motion Control Cage

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4

uranus

128.113.30.17

vx0

128.113.47.254

vxl

128.113.47.10

vx2

128.113.47.11

vx3

128.113.47.12

vx4

128.113.47.13

Table 1: Motion Control CPU List

DatacubeCage
CPU0 CPU 1
saturn

128.113.30.16

datacube laser
128.113.52.254128.113.52.10

W

Table 2: Datacube CPU List

2 Getting Started

To get started using VxWorks here at CIRSSE you must add some directories to your path so that

your shell can find the commands that Wind River and CIRSSE provide to assist in the use of the

system.

In order to use the Wind River provided tools you must add the directory:

/usr2/_es_bed/vx_orks/vxworks5 .O/bin/'arch'

to your path. Note that the 'arch' part of the command (exactly as printed above, "arch"

surrounded by backticks) is important to ensure that the appropriate directory is used for the Sun

architecture (sun3 or sun4) you are running on.
You should also add

/usr2/tes_bed/CIP_SSE/installed/UNIX/bin/' arch'

to your path. Again, you must use the "arch" in backticks in order to get the appropriate directory.

This directory will make the CIRSSE developed VxWorks tools available to you.

2.1 Hello World

What follows is a simple example of writing some code that will run on a VxWorks node. This

is by far the simplest of applications that can be written for VxWorks and thus does not go into

great detail on the use of some of the more esoteric features of the operating system. For more

details see the VxWorks Programmer's Guide which is available in the documentation cabinet or
from Keith Fieldhouse.

This example is a program that will simply print "Hello World" on the standard output channel.

Figure 1 shows the source code that we will be using for this example.

There are several things to note about this code. The first is the inclusion of the file "vx-

Works.h', this file contains data structures, type definitions and macros that are used to produce

VxWorks compatible code. We also include the "stdioLib.h" file, which gives us the function

definitions necessary to uses parts of Wind River's "stdioLib", in this case, "printf".

Another aspect of note is that this code does not have a "main" function. This is because when

VxWorks loads an object module it is actually linking that module with itself, thus, any externally

available (non static) functions in an object file are available to the VxWorks system as a whole

and the VxWorks shell in particular. This means that you may call any function directly from the

shell without the need of a "main" entry point.

!

!

|

m

2

!

#include "vxWorks .h"

#include "s_dioLib .h"

void hello()

(

printf("Hello World\n") ;

}

Figure 1: Hello World Example Code

To compile the code we'll use the vxgcc tool available here at CIRSSE. Vxgcc automatically uses

the appropriate compiler options for compiling code for later downloading to a VxWorks node. In

particular, vxgcc uses the -c option to prevent the compiler from linking the code (thus producing

a linkable object module). Vxgcc also includes the correct VxWorks directories when it searches

for "#include" files. To compile the code (which we'll presume is in a file called, hello.c) we would

do the following:

sol.ral.rpi.eduY, vxgcc hello.c

This will produce the file hello.o in our working directory. Let us presume that our working directory

is /home/krf/vxworks. If that is the case then the following sequence of events can be followed to

download the file to the VxWorks node vx3 and run it:

sol.ral.rpi.eduZ rlogin vxl

-> iam "vxworks"

-> cd "/home/krf/vxworks"

value = 0 = OxO

-> Id < hello.o

value = 0 = OxO

-> hello

Hello World

value = 12 = Oxc

-> logout

connection closed.

sol.ral.rpi.edu_

What follows is a step by step description of this procedure. The jam "vxworks" command is

necessary because of a bug in the VxWorks rlogin daemon that causes VxWorks to "forget" which

username it is supposed to use for network access.

Once you have connected and set up the VxWorks session, you may then set the working

directory to the directory on the Sun systems in which you have placed your code. You can then

use the VxWorks ld 1 command to load your object module into VxWorks (Note that, instead of

tit is worth pointing our here that while the ¢d commands expects its argument to be in double quote marks, the
ld command does not

I

using the cd command you could also have specified the entire "path" of the object file that you

wished to load: ld < /home/krf/vxworks/hello.o).

Finally, since all non static (global) function are available to the shell, you can simply type

"hello" (the name of your function) which will execute the function. Since there is no explicit return

value in the hello function, the "value" returned by VxWorks (in this case, 12) is meaningless.

3 Tools

There are several tools available to users of VxWorks. Some of these are provided by Wind River

Systems while others were developed here at CIRSSE. The following sections describe some of the
more useful of these tools.

3.1 Wind River VxWorks Tools

3.1.1 vwman

Perhaps the most important Wind River tool is their manual page viewer vwman. The vmnan

command allows you to look at any of the Wind River function manual pages. For example:

vwman semTake

willgiveyou the manual page forthe semTake functioncall.There are alsomanual pages forentire

libraries(e.g.semLib). To get to the board specificinformationavailablein the VxWorks manual

you must prefixthe topicwith the board type and a slash.For example

vwman mv135/sysBusTas

willgiveyou informationon the sysBusTas command asitappliesto the Motorola MV-135 board.

The VxWorks manual pages axe dividedintosections.The availablesectionsare:(I) Libraries,

(2) Subroutines,(3) Drivers,(4) Tools,(t)Targets.

To get a Table of Contents for any of the sections,use a command of the form v_nan 3 Toc.

Note that in section"t",you must specifythe targetyou are interestedin: v_nnan _cmv1351Toc.

A listof the availablefunctionsisavailablefrom Keith Fieldhouseor in the Documenation cabinet.

For furtherdetailson v_nan, tryv_rman vmnan.

3.1.2 vxgdb

Wind River system has provided a specially modified version of the Free Software Foundation's

GNU Debugger (gdb) called vxgdb. Details on the use of vxgdb can be found in the manual from

Wind River (available from Keith Fieldhouse or the documentation cabitnet). To successfully use

the debugger, however, there are some details you must take care of first:

You must modify your path to include/usr2/tes'cbed/vxworks. This is so that vxgdb can find
our VxWorks kernels.

You should also create a file in your home directory called .vxgdbinil; which should contain

(at least) the following two lines:

dir /usr21teszbed/ClRSSE/ins_alledlVxWorks/bin

dir /usr2/zestbed/CIRSSE/installed/YxWorks/lib

This will allow vxgdb to find any modules that axe loaded at boot time by the kernel (most
notably, "cestBed. o). You may, of course, have to add other search directories to accommodate the

files you are working on as detailed in the manual.

!

|

|

I

i

I

|

3.2 CIRSSE Tools

3.2.1 cmkmf

The cmkmf command is a simple interface to Imake that will construct a makefile based on an

associated Imakefile-and then call make with the arguments that were specified on the call to cmksf.
Details on the use of cmkmf can be found in the CIRSSE Technical Memo on testbed development

and in the manual pages (TBD).

3.2.2 mane & xmanc

These two commands are similar to the VxWorks vwsan command in that they allow the viewing

of manual pages, in this case, the CIRSSE specific testbed manual pages. The commands work by

calling the UNIX man or xman commands with the appropriate value of MANPATH. Thus, these

commands may be used to find out details about any of the commands described in the CIRSSE
Tools section of this manual.

3.2.3 vxgcc

The GNU C compiler is used for most of the development for the CIRSSE testbed. In general, the

compiler produces more efficient code than does the native Sun C compiler. Further, the GNU C

compiler is an implementation of the new ANSI C standard which the native C compiler is not.

The vxgcc command is designed to make it somewhat easier to compiler code for a VxWorks

target. By default it informs the compiler that it should search the Wind River "include" directories

when compiling. It will also invoke the appropriate compiler for production of 680X0 code regardless

of the platform on which the compilation is being done.

For example, the command vxgcc test .c will produce a 680X0 object module zest .o in your

current directory. If you included any VxWorks header files (e.g. "vxWorks.h") they will be

searched for by the compiler in the correct places.

3.2.4 vxstart

The vxstar'I; command allows the user to specify that a VxWorks node or nodes should execute

a specified file at boot time. The nodes are specified by their network names (e.g. vxl) or by a

collection name (@control or @datacube). Without an argument, vxszart will list the available

nodes. The command also provides the -c option which cancels a particular start up file and which

should be used when work with a node or collection of nodes has completed.

For example vxstarz ©control myszart will cause the commands in the file myszart in the

current directory to be executed at boot time by all of the control cage processor boards. The

command vxstart -c vx3 will cancel any personal start files associated with node vx3. When

you have finished using the VME cage, as a matter of courtesy you should always vxszarz -c any

startup files that you have established.

3.2.5 vxboot

Over time, several different VxWorks kernels have been developed here at CIRSSE. The vxboot

command is a menu driven interface that allows the selection of a particular kernel for a VxWorks

node or collection of nodes. Table 3 shows the currently available VxWorks kernels and their

descriptions.

5

datacube.v4 Kernel for datacube main processor (VxWorks V4) (MV-147)

datacube.v5 Kernel for datacube main processor (VxWorks VS) (MV-147)

laser.v4 Kernel for laser control processor (VxWorks V4) (MV-135)

laser.v5 Kernel for laser control processor (VxWorks VS) (MV-135)

control.v4.mv135 Kernel for Control Cage development (VxWorks V4.0.3)

control.v5.mv135 Kernel for Control Cage development (VxWorks V5.0)

kali-demo-nasa-9O Kernel used for Kali demo for NASA 11/29/90

kali-experimental Experimental Kali Kernel. Use at own risk!

Table 3: Available VxWorks Kernels

Currently the default kernel for the Motion Control cage is control.vS.mv135, while for the
Datacube it is da'cacube.v4 and laser.v4. 2

The vxboot command takes no paramters. When it is run (from a Unix prompt) it will first

present a list of processors, after which it will present a list of kernels. Selecting a processor/kernel

pair will cause the specified processor to use the specified kernel the next time it is booted.

|

2The defaults for the Datacube processors will cha_ge to Version 5 of VxWorks when the Datacube ImageFlow
software supports VxWorks VS.0

CIRSSE Technical Memorandum

To:

From:

Group:

Title:

CIRSSE

Keith R. Fieldhouse

All

Testbed Software Development at CIRSSE

Date: July, 1991

Number: 5 vers. 1

1 Introduction

The CIRSSE testbed is a large, hardware/software project designed to be an arena in which various

issues relating to Intelligent Robotic Control can be researched. In large measure, the CIRSSE

Testbed is centered around two PUMA 6 degree of freedom manipulators and a 6 degree of freedom

dual teletransporter on which the PUMA arms are mounted. The PUMAs, the transporter and their

associated sensors are controlled from a VME based control cage running the VxWorks operating

system. An auxiliary of the CIRSSE testbed is a VME based Datacube vision system which is used

for vision and other forms of sensing. The Datacube also runs the VxWorks operating system.

This document is intended as a set of guidelines and instructions for those members of CIRSSE

who wish to develop software for the testbed. Readers of this document will probably also wish to

read CIRSSE Technical Memo #3 "VxWorks at CIRSSE" for details on the use of the the VxWorks

operating system as it relates to the CIRSSE Testbed.

1.1 The CIRSSE Testbed Software Directory

All of the CIRSSE Testbed software is maintained, once completed, in the directory structure

illustrated in Figure 1. As you can see from the figure, there are two main nodes of the CIRSSE

tree: src and insl:alled. The installed tree is where "header" files, libraries, applications and

viewable manual pages are kept. The src subdirectory contains the archived sources for these
elements of the testbed software.

In general, this means that users who wish to include CIRSSE Testbed ".h" files should look

in (or direct their compiler to look in) t estbed/ClgSSE/installed/VxWorks/h. Users wishing to

use UNIX tools associated with the testbed would set their paths to

_testbed/CIRSSE/installed/UNIX/bin/' arch'. 1

2 Conventions

This portion of the this memo will describe the conventions and standards to be applied to software

that is being developed for the CIRSSE testbed. These standards are applied to such software to

provide for consistency and ease of maintenance since as it is expected that the software will have

a long and productive life, and, quite possibly will be made available to other research institutions.

1Currently the CIRSSE testbed directory is rooted at/usr2 on all of the CIRSSE systems.

II

!

!

II

Figure I: CIRSsE Testbed Directory Structure

|

2.1 Project Organization

When starting a project for the CIRSSE Testbed you must determine whether the project will be

UNIX, VxWorks, or Datacube based and whether it will be an application or a library. This will

help you understand where the code will ultimately reside in the Testbed hierarchy and will also

allow you to apply the standards described below properly.
One further note. Not all software that is developed on the CIRSSE Testbed has necessarily

been developed for the testbed. As the testbed matures and it is used more and more as a research

tool, there will be significant amounts of experimental code developed that runs on the testbed

but which is not a part of the testbed system itself. Such code will generally not be installed in

,,,testbed but will instead be saved in other CIRSSE archive areas. This code, should nevertheless

follow the standards and conventions outlined in this file as much as possible.

\

,\
\

2.2 Naming Conventions

On any given software project there are numerous items which must be named. The following

guidelines will help properly identify such items in context and will help prevent conflict between

like named items.

Before any naming of objects can begin, a project prefix must be chosen. This prefix is used

to identify modules that belong to a project, and the routines and data items that are available

outside of the project. The prefix should in some way identify the function of the project (for

example, "bts" for a set of boot strap routines, "isem" for a set of inter-processor semaphores etc.).

Check with the CIRSSE software engineer to be sure that your project prefix is unique.

Once the project prefix is chosen it is possible to use it to derive the names of other objects in

the project:

• Modules: Often, the words "module" and "file" are used interchangeably. For our purposes,

however, a "module" will refer to a file that can be loaded by VxWorks. Often a single C

source file will be compiled into a single object "module" loadable by VxWorks. Sometimes,

though, it is desirable to link many object modules together into a single VxWorks module.

There are three types of modules that can be created for VxWorks:

- Application Modules: Application modules are modules which contain a single VxWorks

runnable application or tool. Such modules should be named in such a way that their

purpose is readily identifiable. Further, the main entry point of the tool should be the

same as the name of its containing module. For example, the module pumaDiagnost ±cs. o

can be started by typing pumaDiagnostics at the VxWorks prompt.

- Library Modules: Library modules are modules which contain one or more routines

which are designed to be called by code that resides outside of the project. All library
modules should have names that consist of their 2 to 6 letter prefix followed by the letters

"Lib" (e.g. syncLib.o).

- Shareable Modules: Shareable modules are those modules which contain data structures

that are to be loaded at some location in memory which is available to all processors on a

given VME cage chassis. These modules should have names which contain their project

prefix followed by the letters "Share". When building a complete system for the testbed,

many such source files will be included together into one large shareable module.

• UNIX Libraries: In order to satisfythe expectationsof the link editorsthat run under
UNIX, UNIX library filesshouldbeginwith the letters "lib" followedby the project prefix
(thoughin this caseit isn't a prefix) andhavea ".a" astheir extension(e.g. libsync.a).

• UNIX Commands The namesof testbedcommandsshouldbemeaningfulandreasonably
mnemonic.

• CTOS Tasks CTOSeventhandlertaskshavetwo names:a symbolicnameand thenameof
its C function. Several tasks may call the same C function provided each task has a unique

symbolic name. These symbolic names are defined and associated with a C function in your

application's CTOS configuration file (see manual pages for ctos_config). A task's symbolic

name is used by other tasks to find its address for routing messages.

Because most tasks are application-specific, the user has considerable freedom to create task

names. The only restriction at present is that the name be less than 32 characters. However,

due to the central role played by symbolic names in connecting together tasks, it is recom-

mended that the user adopt a consistent naming convention early in code development. Note

that CTOS system tasks are typically accessed via library functions which encapsulate system

task names. Please consult the CTOS administrator if you are naming tasks that are to be
part of MCS or VSS.

The C function associated with a task is named in the same manner as any other function

(see below). The UNIX task creation process requires that the name of a task's linked object
module must match that task's C function name. For this reason, the source code for an

event handler function should be maintained in an individual file with the same name as the

function (plus a ".c" extension).

• Files The naming of individual files is somewhat less formal. This is because a group of

files can generally be identified as being a part of a project simply by their aggregation in a
particular directory. Nevertheless, there are some conventions to be followed:

- Files should have meaningful names. A file that contains string parsing routines is better
named parser, c rather than stuff.¢.

- For projects that produce a single module from a single source file, the filename should

be the same as the module name (and thus will follow the module naming conventions)

with the exception of the extension. In the case of multi-file projects that produce library

modules, if feasible, keep the externally available routines in a file with the same name
as the module.

- For projects which provide external routines, a header file with the same name as the

module (with a .h extension) should be created. It should contain constant declarations

and function prototypes for the use of the users of the module's routines. See section 2.3
for details on the construction of these header files.

• Functions: Function names are written with upper and lowercase letters and no un-

derlines. Each "word", with the exception of the first one is capitalized. For example:

sysProcNumGet(). The general form of the name of the function should be object�verb

as opposed to verb/object (e.g. sysProcNumGet() rather than sysGetProcNum(). Functions

which are externally available should begin with the project prefix.

• Variables: Variables should also be named with upper and lower case letters, each word

but the first capitalized. Externally available variables should begin with their project prefix

u

!

!

|

!

(For example msgMessageNum. There is slightly different handling for variables that are to
be loaded into shared memory for access by multiple processors. These variable name should

be prefixed by the entire module name with which they are associated and an underscore.

Following the underscore they may be named as usual: ipbLib_commLink. This serves to

identify the variable both as associated with the project and as a shared memory variable.

Constants: Constants are named with all upper case letters. Each "word" in the name

is separated with underscores. Again, externally available constant names should begin with

the project prefix. For example MBXAUX._AXCPUS.

Defined Types: Defined types follow the same naming convention as constants.

Macros: Macros follow the the same naming convention as defined types and constants. In
the case of macros that are created in lieu of functions, use the GCC "extern inline" keywords

to create an inline function (see the GCC documentation for details).

2.3 File Organization

The internal organization of a file is broken into several sections separated by blank lines. These

sections are slightly different for source and include files. All files, however, share some common

features:

Each should have as its first line a comment of the following form (though the comment delim-

iters may differ from language to language):

I* 7.wY.7.G7.*/

This will allow the SCCS source code archiving system to insert revision information in the file

once the code has been transferred to the testbed/CIRSSE area.

Following the SCCS comment, the CIRSSE copyright notice should be applied to the file. This

copyright notice can be found in /usr/local/lib/cirsse-copyrigh_.

After the copyright should come a block comment with the following form

/*
** File :

** Written By:
** Date :

** Purpose :

*I

Where each of the items is filled in appropriately.

After this identifying block should come the modification history of the file. This modification

history should be updated each time a file is updated and is re-installed in the testbed/CIRSSE

area.

Each modification history line should look similar to the following:

/*

** Modification History:

**

** I0 May 1991 Archie Goodwin Added doEverything Function call

** 15 Jul 1991 Purley Stebbins Deleted doEverything Function (didn't work)

** Add doMostEverthing call

*/

Subsequent to this initial set of commentary are any include directives needed in order to

compile the module correctly. Generally any OS include files (for the VxWorks or UNIX operating

systems) should come first. These would be followed by any CIRSSE testbed include and finally

by the include files that belong to the project that is being worked on. Note that this is strictly a

rule of thumb and can be overridden when necessary. Never use absolute path names (path names

which begin with the / or . character) to include a file. To search for include files in other

directories use the -I compiler option.

After the include directives come constant and type definitions followed by any function proto-
types needed by the module.

Note that header or ".h" files will have some slightly different organizational requirements from
standard source or ".c" files. These differences will be discussed now.

2.3.1 Header Files

In general header files should be organized as above (Block Commentary, include directives, con-

stants and types etc.). It important that a public header file be created for function libraries that

contains all of the information needed by a user of that library to properly compile their code. In

particular, ANSI C style function prototypes for all externally available functions must be avail-

able in the library's public header file. Generally, this header file should have the same name as

the library but with a ".h" extension (thus, the public header file file for £semLib.o would be

isemLib.h). Private header files may have whatever (meaningful) name the author chooses.

Header files should also contain some logic that protects against multiple of the header file. Such

mutliple inclusing can lead to compiler errors (due4 to multiply defined variables etc.) and causes

needless useage of processor time. The pre-processor logic that helps prevent this is as follows.

... banner information

#ifndef INCfilenameh

#define INCfilenameh

#pragma once

... body of header file ...

#endif

The above code fragment has the follwing meaning. The C pre-processor checks for the existance

of a variable constructed by concatenating the letters "INC" with name of the include file (less the

"." since that character is not allowed in variables in the C pre-processor). If the variable is not

defined (#ifndef) the code following the statement (and before its associated #endif) is included

in the compiler stream. The first order of bussiness is to define the variable (#define) so that

should the header file be included again the body of the file will not be processed. The "#pragma

once" command is a special command that is understood by some C compilers (including the GCC

compiler that we use) and causes them to refrain (when possible) from even reading an include file

after the first time. The use of the #ifndef logic and the #pragma provide the most reliable way
to prevent the inclusion of the body of a header file more than once.

2.3.2 Source Files

The fundamental characteristic of source files is that they contain function implementations. Func-

tions should be organized in the following manner.

Each function must be preceded by a function comment. A function comment consists of the

following:

!

!

!

1. Banner: A comment consisting of a line of asterisks across the page. This serves to identify
the start of new functions.

2. Title: A line containing the name of the function and a one line description of its purpose.

3. Description: A complete description of a function' s purpose and usage. Only necessary if

the title description is insufficient.

4. Returns: A description of the possible return values of the function.

5. Parameters: Parameters may be described either in the block comment proceeding the

function or in the function declaration itself.

Function definitions should be arranged (where possible) to obviate the need for forward dec-

larations. Grouping functions logically so that functions with similar or exactly opposite effects are

near each other is also desirable. (e.g. semaphoreGivo should be near semaphoroTake.

2.4 Style

Coding style refers to the actual layout of code in a module. It is traditionally a rather contentious

issue that rarely lends significant value to a project. The use of C styling programs such as

indent(I) can often subvert and make irrational previously well formed code. Thus, the following

set of guidelines is presented to offer a minimal standard without cramping individual style:

• Be consistent. Use the same coding style throughout a project.

• Use indentation to make control structures more visible. Using 4 characters per indentation

level is suggested.

• Use vertical whitespace to visually break up logical portions of code.

• Separate binary operators (+,-, *, etc.) with a space.

• When modifying someone else's code, use their coding style throughout (even if you, personally,

find it hideous).

Comment code through out, even beyond the block comments described earlier in this docu-

ment. When commenting a block of code, indent the level of comment to the same level as
the code.

• Except in rare cases, place one statement per line.

2.5 Code Documentation

There are two distinct types of documentation for CIRSSE Testbed software. The first is the

CIRSSE Technical Memo and the second is the online manual page. These will be considered

individualy.

2.5.1 CIRSSE Technical Memos

The CIRSSETechnicalmemois the mediumthroughwhich the overall designphilosophyand
functionality for a particular library or application can be described. The content of the memo is

very much up to the author of the software but should spend time placing the software in the context

of the CIRSSE testbed, and should provide a high level overview of the software. In particular,

such technical memos should spend time explaining to a reader and potential user of the software,

why the software is useful and the philosophical underpinnings of its existence.

To produce a technical memo, get the file

/usr/local/lib/techmemo-template .rex

and edit it to suit your work. You may then use I_TEX to format the document. Documentation

on the use of the _TEX formatting package can be obtained from the system administrator.

Once you have produced your Technical Memo it is a good idea to send it our for review to

interested parties (for example, a Technical Memo that deals with software for the Motion Control

System might best be sent to the MCS design team). Once you axe completely satisfied with your

memo, you can contact the Technical Memo administrator and have your memo published.

2.5.2 Online Manual Pages

As their name implies, online manual pages are available for viewing electronically. Their intent

to provide a quick reference to users of your software as to its purpose, calling conventions, return
values etc.

All of the testbed manual pages are produced (as are the UNIX manual pages) using the man

macros for the text formatting program nroff.

The following is a skeleton of manual page in it's pre-formatted state:

.TH name section "da_e"

.SH NAME

.SH SYNOPSIS

.SH DESCRIPTION

.SH OPTIONS or .SH KETURNS

.SH FILEs

.SH SEE ALSO

.SH DIAGNOSTICS

.SH BUGS

.SH AUTHOK

Each of these sections has the following meaning:

.TH name section "date" There are three parameters to the Title/Heading (.TH) com-

mand. The first is the name of the manual page itself. This should be the name of the

command or function that the manual page is associated with. Following this is the section

of the manual system that the manual page belongs in. The sections are divided as follows:

1 Commands

2 System Services

3 User Level Library Functions

4 Device Drivers, Protocols & Network Interfaces

5 File Formats
6 Gamesand Demos
7 MiscellaneousUsefulinformation

8 SystemMaintenanceandAdministration

Followingthe sectionnumbershouldbe the datethe manualpagewaslast updatedin the
format "DDMMMYY".Note that the datemustbecontainedin quotationmarks.

.SH NAME The line followingthis directiveshouldcontainthe nameof the commandor
function (whichshouldbethesameasthenameusedin the .THdirective)followedby a short
(onesentence)descriptionof the command.

.SH SYNOPSIS Thelinesfollowedby this directiveshouldcontaina short synopsisof the
commandand functionsfollowedby its arguments.

.SH DESCRIPTION A narrativedescribingthefunctionof thecommandor functionshould
follow this directive.

.SH OPTIONS Forcommands,the optionsthat modify thecommand'sbehaviorshouldbe
enumeratedin this section.

.SH RETURNS Forfunctions,the possiblereturnvaluesof thefunctionshouldbedescribed
in this section.

.SH FILES This sectionshoulddescribe(and name)and files that the commandusesor
creates.

.SH SEE ALSO This sectionshouldlist otherrelevantmanualpages

.SH DIAGNOSTICS Any errormessagesthat thecommandcangenerateshouldbedocu-
mentedin this section.

.SH BUGS Knowndeficienciesshouldbedescribedhere.

.SH AUTHOR Theauthoror authorsof the commandor function shouldhavetheir names
listed here.

Note that in somecasesa particularsectionof themanualpagemaybeomittedasnot relevant.
Further,in somecasesit isworthwhileto adda sectionnotdescribedhere.Thegoalof the manual
pageis to provideusefulinformationin aconsistentmanner.Forfurther informationonthecreation
ofonlinemanualpagesseethe"FormattingDocuments"sectionofthe SunOS Documentation Tools

volume of the SunOS documentation set. By far, the best way to create a manual page is to obtain

a sample manual page for a similar command and modify it to suit. CIRSSE testbed manual pages
can be found in the testbed area under

,,_tes1_bed/CIRSSE/ins1:alled/man/man?/

where ? isreplacedwith a sectionnumber.

9

3 Development Environment

The basic tools for CIRSSE's Testbed development environment are the Free Software Foundation's

C compiler packages and MIT's Imake. In the following description of the development environment,
the assumption will be made the the reader is familiar with the UNIX make command and the use

of "makefiles" in general.

3.1 Imake

Imake is a program developed at MIT for the Athena Project and is currently available with the

MIT X Window System distribution. The purpose of imake is to allow a developer to concentrate

on the development of his or her code without concern for configuration details of a project. The

configuration details of a project consist of the commands and options used to build software

programs and libraries, the directories into which finished code should be installed, the locations of

libraries, header files and commands and the names and locations of the tools needed to successfully
build software for the project.

To use Imake here at CIRSSE, the user must first build a file named Imakefile. This file

specifies the names and interdependencies of the files that make up the software package. This

Imakefile can then be converted to a Makefile through the use of the cmkmf command. Once

the Makefile is produced, the standard make make command can be used to build the software.

While much of the information contained in an Imakefile is the same as that contained in a

standard Makefile it is generally specified in a much different way. Available to the writer of an

I,,akefile is a set of macros that automatically specify the appropriate build rules for a particular

piece of software. Some of the more useful macros in the CIRSSE Imake system follow:

AllTarget(targets) This macros should simply contain a blank separated list of targets that
should be constructed when the make all command is used.

UNIXBinTarget(target,inclist,objlist) This macro specifies the name and dependencies
of a UNIX command. The "target" is the name of the actual command. "Inclist" should be a

blank separated list of the "header" files that the command depends on while "objlist" should
be a blank separated list of ".o" files that the command depends on. Note that "inclist" can

be empty. It might be somewhat clearer to those familar with traditional make to translate

this macro into the make text that will be produced.

Consider the following macro definition in an Imakefile:

UNIXBinTarget (ctosboot, c_os.h ctosunix, h,ctos. o parser, o process, o)

This will produce a Makefile target similar to the following:

i

!

!1

ctosboot : ctos.o parser.o process.o czos.h ctosunix.h

UNIXLibTarget(target,inclist,objlist) In this macro, "target" is the name of a UNIX

object library (".a') file. _Inclist" and _objlist" have the same form and meaning as they do

in UNIXBinTarget.

I

10

!

VxWorksBinTarget(target,inclist,objlist) This macro is used for the construction of Vx-

Works shell commands (e.g. pumaDiagnostics). "Inclist" and "objhst" serve the same pur-

pose as the do for the UNIX macros. In the case of VxWorks, however, it is very common for

"target" to have a ".o" extension. If this is the case do not place the same ".o" file name in

"objlist" as this will cause circular dependencies. In this case leave "objhst" empty or omit

the target ".o" file from that list.

VxWorksLibTarget(target,inclist,objlist) Due to the nature of VxWorks load files, this

macro and the VxWorksBinTarget are functionally identical. They do, nevertheless, serve to

distinguish the functionality of various targets.

VxWorksShareTarget(target,inclist,objlist) This macro is similar to the VxWorksLib-

Target macro save that it uses the UNIX linker loader to alter the module to be appropriate

for loading into shared memory on multiple processors (see the ctos_config manual page for

details on the SHARE configuartion command).

DatacubeBinTarget(target,inclist,objlist) This macro is similar to the VxWorksBinTar-

get save that it "knows" to search the Datacube include and library directories when building

a target.

DatacubeLibTarget(target,inclist,objlist) This macro is similar to the VxWorksLibTar-

get save that it "knows" to search the Datacube include and library directories when building

a target.

DatacubeShareTarget(target,inclist,objlist) This macro is similar to the DatacubeLib-

Target macro save that, like the VxWorksShareTarget macro, it uses the UNIX linker loader

to alter the module to be appropriate for loading into shared memory on multiple processors.

There are also macro that are used to insure that particular targets are installed in their correct

location when the software is "published" in the -,, testbed directory. When these are used a make

install command will install the targets in their appropriate public directory:

manlnstall(manlist) In this macro, "manhst" is a blank separated list of manual pages that

should be installed in the manual page directory tree. The manlnstall macro determines the

correct manual page directory by reading the .TH directive in the actual manual pages.

UNIXBinInstall(binary) The indicated binary should be a UNIX command that will be

installed in the "bin" directory of the appropriate UNIX architecture. There are similar
macros VxWorksBinInstall and DatacubeBinInstall

UNIXLibInstall(binary) The indicated binary should be a UNIX command that will be

installed in the "bin" directory of the appropriate UNIX architecture.There are similar macros

VxWorksLibInstall and DatacubeLibInstall

For details on other macros available with the CIRSSE Imake configuration see the ¢0NFIG

manual page in the testbed manual pages. Examples of the various kinds of Imakefiles can be
found in the directories underneath

_1:estbed/CIItSSE/src/samples /

Further, all of the directories underneath the testbed sr¢ sub-branch contain Imakefiles that

are used to build their associated projects. As with manual pages, finding an Imakefile for a

11

sirailar project and modifyingit to suit your ownneedsis the most effectiveway to producea
correctImakefile.

Oncean Imakefilehasbeen created, the following cmlun:f commands are of use:

cmkmf all Build all targets contained in the macro AllTargets

cmkmf clean Remove temporary and re-buildable files (e.g. ".o" files)

cmkmf install Install targets in their appropriate public directories. Generally, this command
is only of use to the testbed administrator.

The following items are also of note to users of the system:

• The cml_ command works by simply converting an Imakefile to a Makefile and passing

its arguments on to make. Thus any make argument is a possible cmkmf argument.

• If no changes to the Imakefile are made, the make command can be used directly.

• The UNIX*, VxWorks* and Datacube* macros cannot be used in the same Imakefile.

UNIX, VxWorks and Datacube projects should be kept in separate directories for clarity.

• The CPPFLAGS make macro can be redefined to add new search directories for include files.

The proper syntax would be to put a line sirailar to the following near the beginning of the
Imakefile

CPPFLAGS += /home/lefebvre/vxworks/bootstrap

• There are two types of comments that may be place in an Imakefile. With the first type,

each line is preceded with a/**/#, these comments are copied in to the Makefile as standard

comments. You may also place standard C language style comments in the Imakefile. This

type of comment, however, is not copied to the created Makefile.

Any text in an Imakefile that does not comprise a comment or an Imakefile macro is simply

copied into the resulting Makefile. Thus, custom targets etc. can be kept in an Imakefile
and will find thier way into the Makefile.

For more details on CIRSSE Testbed configuration management see the CIRSSE testbed manual

pages for: CONFIG(?), Imakefile(7) and cmkmf(7).

!

!

|

12

i

|

ctos_boot_phases(2) SYSTEM CALLS ctos_boot_phases(2)

NAME

ctos boot_phases

SYNOPSIS

The CIRSSE Testbed Operating System (CTOS) supports the

startup of distributed applications by stepping through

several startup phases. Certain characteristics of the

state of the system are guaranteed for each phase.

DESCRIPTION

CTOS boot phases are initiated by the broadcast messages:

MSG_PINIT, MSG_AINIT, and MSG AEXEC representing the Process

INITialization, Application INITialization, and Application

EXECution phases. Each of these boot phases are described

below.

PINIT PHASE

The Process Initialization phase is begun after all CPUs on

the chassis have processed their configuration files. This

is an opportunity to initialize individual processes

(tasks).

All tasks have been created and all CTOS functions are

guaranteed to be available.

Because all tasks perform process initialization con-

currently, they will complete initialization in an

unpredictable order; for this reason no initialization

BETWEEN processes should be done during PINIT phase.

AINIT PHASE

The Application Initialization phase begins after all tasks

have completed PINIT processing. This is when you should

perform initialization between processes. Now is a good

time to use the msgTidQuery function to find the TID of a

task's communication partners, and to store the TID for

future use.

All tasks are guaranteed to have completed Process Initiali-

zation.

Three somewhat different event handler structures are possi-

ble to accomodate different AINIT processing requirements:

i) No application initialization required

there should be no 'case MSG_AINIT:' in event handler

'switch' - msgDefaultProc responds to message.

Sun Release 4.1 Last change: 7 June 1991

|

ctos_boot_phases(2) SYSTEM CALLS ctos_boot__phases(2)

2) No messages required during application initialization

put all AINIT processing in 'case MSG_AINIT:' - the

case should end with 'break' so that msgDefaultProc

responds to message.

3) Must receive messages during application initialization

put initial AINIT processing in 'case MSG_AINIT:' and

end case with 'return(0)' to bypass msgDefaultProc,

thereby postponing acknowledgement of the AINIT message.

when AINIT processing is complete, call msgAckAINIT to

explicitly acknowledge the AINIT message.

The distinguishing feature between cases 2) and 3) is

whether messages need to be received; messages may be sent

out and replies may be received in both cases.

!

AEXEC PHASE

The Application Execution phase begins after all tasks have

completed AINIT processing. As the name suggests this is

when the application is executed.

All tasks are guaranteed to have completed Application Ini-

tialization.

Most event handler tasks will not process MSG AEXEC but

instead will respond to application-specific messages [see

message_commands manual pages] that request particular

actions. Likely there will be one task responding to

MSG AEXEC that then takes control of the application and

issues the application-specific messages.

!

IMPORTANT NOTE

The broadcast messages initiating PINIT and AINIT must be

acknowledged to confirm that every task has completed the

phase. Therefore, at the end of EVERY event handler func-

tion there MUST be a call to msgDefaultProc in order to

obtain correct handling of system messages. If the CTOS

system fails to complete the boot process after configura-

tion files are read, the most likely cause is an event

handler function improperly responding to a system message

such as PINIT or AINIT.

|

SEE ALSO

message_commands(2)

msgAckAINIT(2)

msgDefaultProc(2) ctos_config(2)

mm

Sun Release 4.1 Last change: 7 June 1991

!

ctos_boot_phases(2) SYSTEM CALLS ctos_boot_phases(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 7 June 1991 3

ctos_config(2) SYSTEMCALLS ctos_config(2)

NAME
ctos config

SYNOPSIS
The CIRSSETestbed Operating System (CTOS)is configured by
specifying the distribution of software and processes via
two configuration files. These two files, known as the sys-

tem config file and the application config file, are read

whenever CTOS is started. First, the system config file

provides information to configure CTOS for a particular

chassis; it is a read-only file maintained by the System

Administrator. After the system config file is processed,

CTOS reads your application config file to load software and

start the processes of your application. [See the ctconfig

manual pages for how to install your application config
file]

!

DESCRIPTION

CTOS configuration files support the following commands:

load load object module into local memory

share load object module into shared memory

task - create an event handler task

include - include another config file

chdir - change present working directory

echo - echo text to screen or turn off printing

logo - specify file containing logo

connect - specify connections between cpus

All command lines in the config file have the same syntax:

CPU_NUMBER COMMAND COMMANDARGUMENTS

All CPUs on a chassis read the same configuration file, but

do not process every command. The lines with CPU_NUMBER = 0

are processed by CPU 0, and the lines with CPU_NUMBER = 1

are processed by CPU i, and so on. If CPU_NUMBER is set to

-I then the command is processed by all CPUs.

COMMANDs are separated from CPU_NUMBER by one or more

spaces, and may be in upper or lower case.

COMMAND ARGUMENTS are similarly separated by space(s), and

are different for different commands as described below.

Comment lines begin with '#' or ' ' in column one, and blank

lines are ignored. Command lines MUST begin in column one.

CHDIR COMMAND

!

|

w

Sun Release 4.1 Last change: 9 July 1991

!

|

ctos_config(2) SYSTEM CALLS ctos_config(2)

n CHDIR /path/

The CHDIR command changes the present working directory.

Subsequent file reads, e.g. for a load command, will be per-

formed from this directory.

CONNECT COMMAND

n CONNECT hostname cpu_num

The CONNECT command specifies the socket interconnections

that are to be built between cpus on a chassis. This com-

mand is only used in the system configuration file. YOU

SHOULD NOT USE THIS COMMAND IN YOUR APPLICATION CONFIGURA-

TION FILE.

ECHO COMMAND

n ECHO ON I OFF i text

The ECHO command effects what is printed to the console

display during config file processing. An ECHO OFF command

will turn off information and warning messages, but error

messages will be displayed. ECHO ON or ECHO followed by

text will cause all messages to be printed. The text follow-

ing ECHO is printed to the console, providing a convenient

method of displaying comments in the config file. Config

file processing begins with echo turned on.

INCLUDE COMMAND

n INCLUDE /path/filename

The INCLUDE command suspends processing of the current con-

fig file and begins processing of the config file specified

in the command argument. Processing of the original config

file resumes after completion of the included config file.

Config file includes can be nested, i.e. you can put an

INCLUDE command inside an included file.

The full /path/ to a file is used if given, otherwise the

file on the current working directory is read [see CHDIR

command].

LOAD COMMAND

n LOAD /path/filename

Sun Release 4.1 Last change: 9 July 1991 2

ctos config(2) SYSTEMCALLS ctos_config(2)

The LOADcommandloads an object file into local processor
memory. The order in which object modules are loaded is

important. Basically, the object code for a C function MUST

be loaded before loading object code which calls that C

function. Additionally, all C functions used by a task MUST

be loaded before the task is created [see TASK command

below]. Loads by both LOAD and SHARE [see below] should be

accounted for when determining the order of loading object

files.

The full /path/ to a file is used if given, otherwise the

file on the current working directory is read [see CHDIR

command].

!

LOGO COMMAND

n LOGO /path/filename

The LOGO command provides a means to display a logo when the

application starts (when AEXEC begins). The logo should be

defined in a readable file 79 columns wide by 15-20 lines

long.

The full /path/ to the logo file is REQUIRED because the

current working directory when the command was read is not
remembered.

SHARE COMMAND

n SHARE /path/filename memory_hex_address I 0

The SHARE command loads an object file at a specified memory

location; its primary use is to initialize shared memory.

The order of loading object files follows the same rules as

for the LOAD command. Loads by both LOAD [see above] and

SHARE should be accounted for when determining the order of

loading object files.

Be careful to avoid loading object modules at overlapping

addresses. One way to prevent this potential problem is to

link together all objects going into shared memory and load

them as a single module. However, the preferred way to

avoid memory address conflicts is to specify a hex address

of 0 (zero). When the address is zero the object file will

be loaded at an address immediately following the previous

SHARE file. Since the CTOS system loads some shared memory

items and hence will initialize the SHARE address, you can

specify a hex address of 0 in your application configuration

file for virtually all cases.

!

|

mm

Sun Release 4.1 Last change: 9 July 1991

!

ctos_config(2) SYSTEM CALLS ctos_config(2)

IMPORTANT: when the "zero hex address" option is used, the

SAME shared object files must be loaded in the SAME order on

all cpus in order to get the correct addresses.

The memory hex_address argument {if non-zero) must be speci-

fied in hexadecimal format; specifically, the address must

begin with 0x, i.e. 0x1600000.

The full /path/ to a file is used if given, otherwise the

file on the current working directory is read [see CHDIR

command].

TASK COMMAND

n TASK symbolic_name function_call priority

The TASK command creates an event handler process with a

message queue and a unique task id (TID) that serves as its

address for message routing.

The TID of any task can be found from its symbolic name,

hence the symbolic_name argument must be unique throughout

an application. Length of symbolic names should be limited

to 24 characters.

The function call argument specifies the name of the C func-

tion that executes the event handler code. [See the manual

pages for msgDefaultProc for a description of event handler

format.] Any number of tasks may be created that call the

same C function provided that each task has a unique sym-

bolic name and that the C function is reentraint. Length of

function_call C function names should be limited to 32 char-

acters.

As noted above for the LOAD command, all C functions used by

a task MUST be loaded before the task is created. As long

as this requirement is met, LOAD and TASK commands can be

intermixed in the config file.

The priority argument specifies the priority at which the

task will execute. Tasks may have priorities ranging from 0

(highest priority) to 255 (lowest). Priorities below i00

are reserved for CTOS and VxWorks processes, so normal

application tasks will have priorities in the range of i00
to 255.

IMPORTANT NOTE

A portion of CTOS itself is loaded via a system configura-

tion file. In an earlier version of CTOS it was necessary

to INCLUDE this system configuration file; however, this is

Sun Release 4.1 Last change: 9 July 1991 4

ctos_config(2) SYSTEMCALLS ctos_config (2)

no longer required and your configuration file should not
include 'ctos_system_config'.

I

SEEALSO
ctconfig(1) ctos boot__phases(2)

AUTHOR
Don Lefebvre

!

!

|

Sun Release 4.1 Last change: 9 July 1991

!

message_commands(2) SYSTEM CALLS message_commands(2)

NAME

messagecommands

SYNOPSIS

The .command member of the MSG_TYPE

indicate the function of a message.

structure is used to

DESCRIPTION

The contents of a message are defined by the MSG_TYPE struct

shown below. The .command member of the message is used to

indicate its function. For instance, when the msgTidQuery

function is called, it sends a message command of

MSG_QUERY_TID to the Tid Server on CPU 0. This command

informs the Tid Server that it should look up a TID and

reply to the message sender. The other members of the

MSG_TYPE struct are defined in the manual pages for msgLib

and message_flags.

struct MSG_TYPE

{
TID_TYPE dest ;

TID_TYPE source ;

CMD_TYPE command ;

void *data ;

int datasize ;

FLAG TYPE flags ;

}

Commands are declared as type CMD_TYPE which is a 2-byte

unsigned integer - allowing the definition of over 65,000

unique commands. Customarily, the message .command is

equated to a predefined constant when the message is built.

For example, the msgLib.h header contains the definition:

#define MSG_TID_QUERY MSG_STANDARD+4

And, a message using this command would use this definition

as the command value in an assignment, msgBuild or msgCom-

mandSet function call:

or

or

msg.command = MSG_TID_QUERY ;

msgBuild (&msg, , , MSG TID_QUERY) ;

msgCommandSet (&msg, MSG_TID_QUERY) ;

The above message command definition also illustrates two

conventions that have been adopted for the CIRSSE testbed

operating system:

Sun Release 4.1 Last change: 23 May 1991

message_commands(2) SYSTEMCALLS message_commands(2)

i) Command symbolic names are uppercase and begin with MSG_

2) Commands values are assigned as offsets to blocks of com-

mands, e.g. the MSG_TID_QUERY command is the 4th in the

MSG_STANDARD block.

By assigning command values by blocks we can manage commands

to ensure that they are unique across the CTOS system and
all applications.

USER-DEFINED COMMANDS

Users may create their own messages by defining commands

the MSG_USER block:

in

#define MSG_PID_LOOPS

#define MSG MY MESSAGE

#define MSG_ANOTHER_MSG

MSG_USER

MSG_PID_LOOPS+I

MSG PID_LOOPS+2

If your application is later adopted as a standard applica-

tion, the CTOS system administrator will assign

MSG_PID_LOOPS to its own block so that other users can

access the application without a conflict of command values.

!

STANDARD MESSAGES

There are several standard messages that all event handler

tasks should respond to - these are listed below. For con-

venience and to ensure uniform response, a msgDefaultProc

function is provided to perform default processing of stan-

dard messages. Your event handler function should pass

standard messages to msgDefaultProc after completing your

application-specific processing of the message. [See msgDe-

faultProc manual pages or DECODING MESSAGES topic below for

an example]

STANDARD COMMANDS

MSG_PINIT - Broadcast message begining process initial-

ization phase (must be acknowledged).

MSG_AINIT - Broadcast message begining application

initialization phase (must be acknowledged).

MSG_AEXEC - Broadcast message begining application

execution phase.

!

DECODING MESSAGES

Most event handler functions will have a

as suggested by the example shown below.

function must decode the .command member

similar structure

Specifically, the

of the message,

l

Sun Release 4.1 Last change: 23 May 1991

l

message_commands(2) SYSTEM CALLS message_commands(2)

perform- the appropriate processing, and pass standard mes-

sages plus "unrecognized" messages to the default process-

ing. Message commands are "decoded" via a SWITCH statement

in which each recognized command is a CASE. If the event

handler function performs all required processing, then the

CASE ends with RETURN(0); otherwise, the CASE should end

with BREAK so that the message can be passed to msgDe-

faultProc.

int UserEventHandler (TID_TYPE myTid, MSG_TYPE *msg)

[
switch (msg->command)

{
case MSG_AINIT:

/* application-specific AINIT processing

break ;

case MSG MY MESSAGE:

/* process this message command

return (0) ;

*/

case MSG_ANOTHER_MSG:

/* process this message command

return (0) ;

]

return (msgDefaultProc (myTid, msg)) ;

}

*/

SEE ALSO

msgLib(2) msgDefaultProc(2) ctos_boot_phases(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 23 May 1991 3

message_flags(2) SYSTEMCALLS message_flags(2)

NAME
message_flags

SYNOPSIS
The .flags memberof the MSG_TYPE
specify handling of a message.

structure is used to

DESCRIPTION
The contents of a message are defined by the MSG_TYPE struct

shown below. The .flags member of the message is used to

specify how the message and message data are handled. The

other members of the MSG_TYPE struct are defined in the

manual pages for msgLib and message_commands.

struct MSG_TYPE

(
TID_TYPE

TID_TYPE

CMD_TYPE

void

int

FLAG_TYPE

}

dest

source

command ;

*data

datasize ;

flags

Message flags have five fields:

TYPE

PRIORITY

REPLY_WAIT

SEND_WAIT

MEMOWNER

- indicates normal, reply, or broadcast

- urgent msgs go to front of dest queue

- if set, task blocks and waits for reply

- optionally waits if dest queue is full

specifies who deallocates message data

Message flags are created by OR'ing together defined con-

stants for each field - either in an assignment statement or

by using the flag building routines in msgLib. [See FLAGS

MANIPULATION FUNCTIONS topic below] Message flag masks are

also defined in the msgLib.h header to assist flag manipula-

tion, but their use is discouraged.

!

!

|

TYPE FIELD

The type field of .flags selects the messaging mechanism

that will be used to deliver the message. Message type

should not be confused with message priority. With only

extremely rare exceptions, users will specify

MF_TYPE_NOR/W.AL. A normal message is routed to the message

queue of the destination task directly through msgSend

and/or the MsgDispatcher.

Reply messages, on-the-other-hand, are not put in a queue;

I

Sun Release 4.1 Last change: 4 June 1991

!

message_flags(2) SYSTEM CALLS message_flags(2)

rather, - they are sent to a separate storage location for

replies, and the original message sender (now the destina-

tion of the reply) is unblocked. [See REPLY_WAIT FIELD

topic below] The MF_TYPE_REPLY field is set by the msgReply

function, and used by the system to effect this alternate

routing.

Similarly, the type field of broadcast messages are set by

the system and cause messages to be differently routed.

[See msgBroadcast manual pages for a description]. These

message types should not be used by application developers.

DEFINED CONSTANTS:

MF_TYPE_NORMAL - normal message, ALL USER MESSAGES

SHOULD BE OF THIS TYPE.

MF_TYPE_REPLY - reply message, USED BY SYSTEM.

MF_TYPE BC tNORMAL - broadcast message, USED BY SYSTEM.

MF_TYPE BC REPLY - reply to broadcast message, USED

BY SYSTEM.

PRIORITY FIELD

The priority field of .flags specifies how the message is

added to the message queue of the destination task. Mes-

sages are normally added to the back of the queue, where

they must wait until the destination task has processed all

proceeding messages. When a message is given urgent prior-

ity it is placed in the front of the queue and will be the

next message processed after the destination task completes

its current operation.

DEFINED CONSTANTS:

MF_PRI_NORMAL message sent to back of dest queue.

MF_PRIURGENT message sent to front of dest queue.

REPLY_WAIT FIELD

The reply_wait field of .flags indicates whether the sending

task wishes to wait for a reply. If reply_wait is not

MF_REPLY WAIT NO, then the sending task will be blocked

until a reply message is received or the wait times out.

[See msgSend and msgReply manual pages for return values

when reply_wait is set]

DEFINED CONSTANTS:

Sun Release 4.1 Last change: 4 June 1991

message_flags(2) SYSTEMCALLS message_flags(2)

MF_REPLYWAIT_NO

MF_REPLYWAIT_FOR

MF_REPLYWAIT_ISEC

- do not wait for reply.

- wait forever for reply.

- wait for reply, but timeout after
1 second.

SEND_WAITFIELD
The send_wait field of .flags determines what the system
does when the messaging system is busy or the destination

task queue is full. With send_wait set to MF_SEND_WAIT_NO,

the system will discard messages that it cannot deliver

immediately. Most of the time this option is adequate. If

the message absolutely must get through, then use

MF SEND_WAIT_FOR; but be warned that the sending task my be

blocked waiting to send the message. [See msgPost manual

pages for an alternative that ensures the sending task will

not block]

DEFINED CONSTANTS:

MF_SEND_WAIT_NO - do not wait to send message.

MF_SEND_WAIT_FOR - wait forever to send message.

!

MEMOWNER FIELD

One of the primary uses of a message is to transmit a

pointer to additional data. The CIRSSE messaging system

provides a means to manage this "message data". The

MEMOWNER field of msg.flags specifies whether the sending

task or the receiving task has the responsibility for deal-

locating message data storage. If MF_MEMOWNER_RECEIVER is

chosen, then the storage allocated to message data is

AUTOMATICALLY deallocated by the event handler shell follow-

ing processing of the message. [Note that the msgDataKeep

function can be used by the receiving task to prevent

automatic deallocation] With MF_MEMOWNER_SENDER the sending

task must deallocate message data storage if desired, no

automatic deallocation occurs.

DEFINED CONSTANTS:

MF_MEMOWNER_RECEIVER event handler shell automatically

deallocates message data memory.

MF_MEMOWNER_SENDER - message sender is responsible for

deallocating message data memory.

!

|

_m

Sun Release 4.1 Last change: 4 June 1991

!

message_flags(2) SYSTEM CALLS message_flags(2)

PREDEFINED MESSAGE FLAGS

For convenience, flags for the most common cases have been

defined. Most messages can use the predefined standard flag:

MFSTANDARD = MF_TYPE_NORMAL I MFPRI_NORMAL l

MF_REPLYWAIT_NO _ MF_SEND_WAIT_NO J

MF_MEMOWNER_RECEIVER

Other predefined message flags are:

MFREPLYWAIT = MF_TYPE_NORMAL t

MF_REPLY_WAIT_FOR J

MF_MEMOWNER_RECEIVER

MF PRI NORMAL i

MFSEND_WAIT_NO J

MF_SYSTEM = MF_TYPE_NORMAL i

MF_REPLY_WAIT_NO f

MF_MEMOWNER_RECEIVER

MF PRI URGENT I

MF SEND_WAIT_FOR J

FLAGS MANIPULATION FUNCTIONS

Message .flags are been designed with expansion in mind, and

may be redefined in future. For this reason it is important

to avoid direct manipulation of .flags fields. Users are

encouraged to only use flag manipulation functions [listed

in the "Building Messages" section of msgLib manual pages]

or predefined message flags.

For example, to specify that the task is to wait for a

reply, we would use the following:

msg.flags = msgReplyFlagSet (msg.flags, MF_REPLY_WAIT_FOR);

SEE ALSO

msgLib(2) msgSend(2) msgFlag_macros(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 4 June 1991 4

msgAckAINIT(2) SYSTEMCALLS msgAckAINIT(2)

NAME
msgAckAINIT- explicitly acknowledge AINIT message

SYNOPSIS
STATUSmsgAckAINIT (TID TYPEtid)

TID_TYPE tid - task id of task calling msgAckAINIT

DESCRIPTION
For someevent handler tasks it is desirable to postpone
acknowledging the AINIT messageso that the task can receive
other messages during the Application Initialization phase.

Once the task has completed Application Initialization it

MUST acknowledge the AINIT message so that CTOS can continue

with its next boot phase. The msgAckAINIT function should

be used to generate the AINIT acknowledgement message.

Please read the AINIT PHASE topic of the ctos boot_phases

manual pages for tips on receiving messages during the

Application Initialization phase.

|

RETURNS

OK or ERROR indicating success of sending acknowledgement.

SEE ALSO

ctos_boot phases(2) msgLib(2) msgDefaultProc(2)

!

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 7 June 1991

!

msgAcknowledge(2) SYSTEM CALLS msgAcknowledge(2)

NAME

msgAcknowledge - acknowledge a received message

SYNOPSIS

STATUS msgAcknowledge (MSG_TYPE *msg)

MSG_TYPE *msg pointer to received message

DESCRIPTION

msgAcknowledge is used to reply to a message without return-

ing data. It is implemented as a macro:

msgReply (msg, NULL, MS_NONE, MF_STANDARD)

RETURNS

OK or ERROR indicating success of sending out reply.

SEE ALSO

msgLib(2) msgSend(2) msgReply(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 3 June 1991 1

[]

msgBroadcast(2) SYSTEM CALLS msgBroadcast(2)

NAME

msgBroadcast - broadcast message to all tasks

SYNOPSIS

int msgBroadcast (MSG_TYPE *msg, FLAG_TYPE scope)

MSG_TYPE *msg - pointer to message to be sent

FLAG TYPE scope - scope of broadcast (defined constant)

DESCRIPTION

msgBroadcast sends a message to many tasks at once. The

broadcast can be limited to the local CPU or chassis, or may

be broadcast application-wide.

The scope of the broadcast is specified as one of the fol-

lowing defined constants:

MB_LOCAL - broadcast to local cpu only

MB_CHASSIS - broadcast to local chassis only

MB SYSTEM - broadcast to entire application

When msgBroadcast is called, a message is sent to the local

Msg Server (local scope) or to the TID Server (chassis &

system scope) requesting that the message be broadcast.

These requests are distributed to all Msg Servers on the

chassis; and, for system-wide broadcasts, to all TID Servers

throughout the system. Acknowledgements of REPLY WAIT

broadcast messages are gathered via the reverse routing.

IMPORTANT: the message is NOT sent to the task which called

msgBroadcast, so that deadlock is prevented when REPLY_WAIT

is set.

All message flags are supported; for instance, a task can

broadcast a message and wait for all tasks to reply. How-

ever, msgBroadcast cannot return data to a waiting task.

REPLY_WAIT should be used with caution as replies MUST be

received from ALL tasks. The default processing provided by

msgDefaultProc does acknowledge broadcast messages - making

use of REPLY_WAIT practical.

Typically a task acknowledges a broadcast through a call to

msgAcknowledge (often from within msgDefaultProc) which

replies with a null msg.data pointer. To facilitate count-

ing a subset of responding tasks, the msgBroadcast function

will return a positive integer which is the count of tasks

that replied with non-null msg.data pointers. Thus, to have

a task counted it should reply with something like

msgReply(msg, (void *) i, MS_KEEP ADRS, MF_STANDARD).

!

!

|

mm

Sun Release 4.1 Last change: 16 July 1991

!

msgBroadcast(2) SYSTEM CALLS msgBroadcast(2)

RETURNS

Positive integer indicating number of non-zero acknowledge-

ments received; or

-i when error occurred during broadcast.

SEE ALSO

msgLib(2) msgSend(2) msgBuild(2) message_flags(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 16 July 1991 2

msgBuild(2) SYSTEMCALLS msgBuild(2)

NAME
msgBuild - build messageby filling messagestructure

SYNOPSIS
MSG_TYPE*msgBuild (MSG_TYPE *msg

TID_TYPE dest

TID_TYPE source

CMD_TYPE command

void *data

int datasize

FLAG_TYPE flags
!

MSG_TYPE

TID_TYPE

TID_TYPE

CMD_TYPE

void

int

FLAG_TYPE

*msg - pointer to message struct or NULL

dest - address of destination task

source - address of task sending message

command - message command

*data - pointer to additional message data

datasize - number of bytes in message data

flags - message flags

DESCRIPTION

msgBuild provides a convenient way to define a message. The

arguments to msgBuild are used to define the members of the

message structure, whose address is passed in as the first

argument. If *msg == NULL then msgBuild will allocate

storage.

For a description

manual pages

message_flags.

of message structure members see the

for msgSend, message_commands, and

!

RETURNS

Pointer to message that was built.

SEE ALSO

msgLib(2) msgSend(2) message_commands(2) message_flags(2)

|

AUTHOR

Don Lefebvre

l

Sun Release 4.1 Last change: 31 May 1991

|

msgBuildSend(2) SYSTEM CALLS msgBuildSend 2)

NAME

msgBuildSend - build then send a message

SYNOPSIS

int *msgBuildSend (TID_TYPE dest ,

TID_TYPE source ,

CMD_TYPE command ,

void *data ,

int datasize ,

FLAGTYPE flags

TID_TYPE

TID_TYPE

CMD_TYPE

void

int

FLAG_TYPE

dest - address of destination task

source - address of task sending message

command - message command

*data - pointer to additional message data

datasize - number of bytes in message data

flags - message flags

DESCRIPTION

As the function name suggests, msgBuildSend is a combination

of msgBuild and msgSend. The arguments to msgBuildSend are

used to define the members of a message structure, and then

the message is sent.

Internally, msgBuildSend allocates storage for the message,

and later frees it after the message is sent.

For a description of

manual pages for

message_flags.

message structure members see the

msgSend, message_commands, and

RETURNS

Same as msgSend.

SEE ALSO

msgLib(2) msgBuild(2)

message flags(2)

msgSend(2) message_commands(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 31 May 1991 1

msgCopy(2) SYSTEMCALLS msgCopy(2)

NAME
msgCopy make local copy of message

SYNOPSIS
MSGTYPE

MSG_TYPE

*msgCopy(MSG_TYPE*msg)

*msg - pointer to received messageto be copied

DESCRIPTION
The msgCopyfunction allocates memoryand copies the message
pointed to by *msg. This is the only mechanismfor retain-
ing a messagebetween successive calls of an event handler
function because a messageis normally lost when the event
handler function exits. [Rememberto use a static variable

for the new message pointer]

msgCopy DOES NOT COPY MESSAGE DATA.

msgDataKeep to copy message data.

Use msgDataCopy or

RETURNS

pointer to copy of message

!

SEE ALSO

msgLib(2) msgSend(2)

AUTHOR

Don Lefebvre

msgDataCopy msgDataKeep

!

|

m

Sun Release 4.1 Last change: 16 July 1991

!

msgDataCopy(2) SYSTEM CALLS msgDataCopy(2)

NAME

msgDataCopy - make local copy of message data

SYNOPSIS

void *msgDataCopy (MSG_TYPE *msg)

MSG_TYPE *msg - pointer to message whose data is to be copied

DESCRIPTION

The msgDataCopy function allocates memory

message data pointed to by msg->data.

and copies the

When a message is received with its MEMOWNER flag set to

SENDER the message data should be considered to be READ

ONLY. In this case you might want to use msgDataCopy to get

a copy of the data that you can change.

When a message is received with its MEMOWNER flag set to

RECEIVER then the receiving task "owns" the data and can

change it as desired. However, when the current call to the

event handler function exits the message data will be

automatically deallocated (unless msgDataKeep was called).

In this case you may want to copy the message data to retain

it between calls to the event handler function.

msgDataCopy DOES NOT COPY THE MESSAGE ITSELF.

to copy the message.

Use msgCopy

Note that the receiving task now has the responsibility to

deallocate the memory used by the copied message data after

it is no longer needed.

RETURNS

pointer to copy of message data

SEE ALSO

msgLib(2) msgSend(2) msgDataKeep msgCopy

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 16 July 1991

msgDataKeep(2) SYSTEMCALLS msgDataKeep(2)

NAME
msgDataKeep keep messagedata by preventing deallocation

SYNOPSIS
void *msgDataKeep(MSG_TYPE*msg)

MSG_TYPE *msg pointer to message whose data is to be kept

DESCRIPTION

The msgDataKeep function prevents the automatic deallocation

of message data that occurs when an event handler function

exits and the message's MEMOWNER flag is RECEIVER.

msgDataKeep performs somewhat differently in VME and UNIX

versions:

For VME, msgDataKeep simply adjusts the MEMOWNER flag to

prevent the deallocation. The msg->data pointer is not

effected, but may point to memory on another CPU. If a

local copy of the message data is desired use the msgDa-

taCopy function.

For UNIX, msgDataKeep performs identically to msgDataCopy.

TO MAINTAIN COMPATIBILITY in event handler functions that

may run in either VME or UNIX environments, it is recom-

mended that code be developed to account for the possibility

that msgDataKeep may change the message data pointer to

point to newly allocated memory.

Note that the receiving task may now have the responsibility

to deallocate the memory used by the kept message data after

it is no longer needed.

!

!

RETURNS

pointer to message data

SEE ALSO

msgLib(2) msgSend(2) msgDataCopy msgCopy

|

AUTHOR

Don Lefebvre

B

Sun Release 4.1 Last change: 16 July 1991

!

msgDefaultProc(2) SYSTEM CALLS msgDefaultProc(2)

NAME

msgDefaultProc - default processing for system messages

SYNOPSIS

int msgDefaultProc (TID_TYPE tid, MSG_TYPE *msg)

TID_TYPE tid - address of current task

MSG_TYPE *msg - pointer to received message

DESCRIPTION

The msgDefaultProc function provides default processing of

system messages such as PINIT and AINIT in event handler

functions. Even in cases where your event handler function

responds to a system message (such as performing application

initialization in response to AINIT), a call should be made

to msgDefaultProc following your processing.

Most event handler functions will have a similar structure

as suggested by the example shown below. Specifically, the

function must decode the .command member of the message,

perform the appropriate processing, and pass standard mes-

sages plus "unrecognized" messages to msgDefaultProc. Mes-

sage commands are "decoded" via a SWITCH statement in which

each recognized command is a CASE. If the event handler

function performs all required processing, then the CASE
ends with RETURN(0); otherwise, the CASE should end with

BREAK so that the message can be passed to msgDefaultProc.

int UserEventHandler (TID_TYPE myTid, MSG TYPE *msg)

{
switch (msg->command

{
case MSG_AINIT:

/* applicatlon-specific AINIT processing

break ;

*/

case MSG_MY MESSAGE:

/* process this message command

return (0) ;

*/

case MSG_ANOTHER_MSG:

/* process this message command

return (0) ;

}
return (msgDefaultProc (myTid, msg)) ;

}

*/

Sun Release 4.1 Last change: 7 June 1991

msgDefaultProc(2) SYSTEMCALLS msgDefaultProc(2)

DEFAULTPROCESSING
msgDefaultProc provides the following default processing:

MSG_PINIT- acknowledgesbroadcast message.

MSG_AINIT- acknowledgesbroadcast message.

MSG_AEXEC- displays logo.

IMPORTANTNOTE
At the end of EVERYevent handler function there MUST be a
call to msgDefaultProc in order to obtain correct handling
of system messages. If the CTOSsystem fails to complete

the boot process after configuration files are read, the

most likely cause is an event handler function improperly

responding to a system message such as PINIT or AINIT.

RETURNS

[System return code to event handler shell]

SEE ALSO

msgLib(2) message_commands(2) ctos_boot phases(2)

AUTHOR

Don Lefebvre

!

|

Sun Release 4.1 Last change: 7 June 1991

!

msgDequeue(2) SYSTEM CALLS msgDequeue(2)

NAME

msgDequeue - read message directly from local queue

SYNOPSIS

STATUS msgDequeue (TID TYPE rid, MSG_TYPE *msg)

TID_TYPE tid - task id of queue owner

MSG_TYPE *msg - ptr to storage for dequeued message

DESCRIPTION

msgDequeue removes a message from the local message queue

identified by tid. While it is possible to read a message

from any task on the local CPU, it is recommended that a

task only manipulate its own message queue.

Note that there is no checking that the input rid is local.

If the tid is not local, the result is unpredictable.

RETURNS

OK: if queue not empty, msg contains the dequeued message.

if queue was empty, msg->command is set to MSG_QUEUE_EMPTY.

ERROR: dequeue operation failed, e.g. rid was invalid.

SEE ALSO

msgLib(2) msgRequeue(2) msgQueueCount(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: ii June 1991 1

msgErrorLog(2) SYSTEMCALLS msgErrorLog(2)

NAME
msgErrorLog - send a string to the Error Server

u

SYNOPSIS

STATUS msgErrorLog (TID_TYPE rid, char *string)

TID_TYPE rid - address of task calling msgErrorLog

char *string - error message string

DESCRIPTION

msgErrorLog copies the error message string, and sends a

message pointing to this string to the Error Server. At

present, the Error Server simply prints the error message to
the console.

Since msgErrorLog makes a copy of the input error string,

the task calling this function does not need to maintain

storage for *string.

!

RETURNS

OK or ERROR indicating result of msgSend to Error Server.

SEE ALSO

msgLib(2)

AUTHOR

Don Lefebvre

!

|

mm

Sun Release 4.1 Last change: 31 May 1991

!

msgFlag_macros(2) SYSTEM CALLS msgFlag_macros(2)

NAME

msgMemownerFlagSet - set MEMOWNER field of flag

msgPriorityFlagSet - set PRIORITY field of flag

msgReplyFlagSet - set REPLY_WAIT field of flag

msgSendFlagSet - set SEND_WAIT field of flag

msgTypeFlagSet - set TYPE field of flag

SYNOPSIS

FLAG_TYPE

FLAG_TYPE

FLAG_TYPE msgReplyFlagSet

FLAG_TYPE msgSendFlagSet

FLAG_TYPE msgTypeFlagSet

msgMemownerFlagSet (FLAG_TYPE flag, FLAG_TYPE field)

msgPriorityFlagSet (FLAG_TYPE flag, FLAG_TYPE field)

(FLAG_TYPE flag, FLAG_TYPE field)

(FLAG_TYPE flag, FLAG_TYPE field)

(FLAG_TYPE flag, FLAG_TYPE field)

FLAG_TYPE flag - base flag

FLAG_TYPE field - new value for flag field (defined constant)

DESCRIPTION

These functions are used to manipulate the fields of a

sage .flags member. Message flags have five fields:

me s -

MEMOWNER

PRIORITY

REPLY_WAIT

SEND_WAIT

TYPE

specifies who deallocates message data

- urgent msgs go to front of dest queue

if set, task blocks and waits for reply

- optionally waits if dest queue is full

indicates normal, reply, or broadcast

Please read the message_flags manual pages for descriptions

of the actions defined by these flag fields, and the defined

constants that are acceptable values for flag fields.

The actions of these functions are to replace the particular

field of the base flag with a new value. For instance, the

following function calls change the MEMOWNER field:

msg.flags = msgMemownerFlagSet (msg.flags, MF_MEMOW_ER_SENDER);

msg.flags = msgMemownerFlagSet (MF_STANDARD, MF_MEMOWNER_SENDER);

RETURNS

flag resulting from changing 'field' of 'base flag'

Sun Release 4.1 Last change: 4 June 1991

msgFlag_macros(2) SYSTEM CALLS msgFlag_macros(2)

SEE ALSO

msgLib(2) msgSend(2) message_flags(2)
I

AUTHOR

Don Lefebvre

!

!

|

Sun Release 4.1 Last change: 4 June 1991

I

msgLib(2) SYSTEM CALLS msgLib(2)

NAME

msgLib. [-ch] - Messaging Routines

SYNOPSIS

................. SENDING MESSAGES

msgSend

msgPost

msgBroadcast

msgErrorLog

msgReply

msgAcknowledge

msgBuildSend

- send message to event handler task

- post message (returns immediately)

- broadcast message to all tasks

- send a string to the Error Server

- reply to received message

- acknowledge a received message

- build then send a message

................. BUILDING MESSAGES

msgBuild - set all members of message structure

msgMemownerFlagSet - set MEMOWNER field of msg.flag

msgPriorityFlagSet - set PRIORITY field of msg.flag

msgReplyFlagSet - set REPLY_WAIT field of msg.flag

msgSendFlagSet - set SEND WAIT field of msg.flag

msgTypeFlagSet - set TYPE field of msg.flag

................. WORKING WITH TIDS

msgTidQuery

msgTidGetChassis

msgTidGetCpu

msgTidGetLocal

msgTidSetChassis

msgTidSetCpu

msgTidSetLocal

- find task id from symbolic task name

- get CHASSIS field of task id

- get CPU field of task id

- get LOCAL field of task id

- set CHASSIS field of task id

- set CPU field of task id

- set LOCAL field of task id

................. QUEUE OPERATIONS

msgDequeue read message directly from local queue

msgQueueCount - count messages in local queue

msgRequeue put message directly into local queue

................. MEMORY MANAGEMENT

msgCopy - make local copy of message

msgDataCopy make local copy of message data

msgDataKeep - keep message data (prevents dealloc)

msgVarPtrSet - set pointer to saved variables

msgVarPtrGet - get pointer to saved variables

................. SPECIAL PROCESSING

msgAckAINIT - explicit acknowledgement of AINIT message

msgDefaultProc default processing for system messages

DESCRIPTION

These msgLib functions are the interface to the CIRSSE

testbed message passing system. They are the primary means

for communicating between "event handler" tasks distributed

Sun Release 4.1 Last change: 12 July 1991 1

|

msgLib(2) SYSTEM CALLS msgLib(2)

over the CPUs of a VME chassis; and, eventually, between VME

chassis and SUN workstations.

The steps to sending a message are i) determine the task id

(TID) of the message's destination, 2) build a message, and

3) send it. When an event handler task is created, it is

given a unique TID which serves as its address. While each

task "knows" its own TID, it needs to find the TID of its

communication partners - the msgTidQuery function is used to

do this. Rather than calling msgTidQuery every time a mes-

sage is sent, a program will usually determine destination

TIDs during initialization (AINIT phase) and save them for

later use.

Building the message is the next step. The structure defin-

ition shown below lists the components of a message. The

first two components are the TIDs of the destination of the

message and its source. Next is the message command which

describes the function of the message. For instance, when

the msgTidQuery function is called it sends a message com-

mand of MSG_QUERY_TID to the Tid Server on CPU 0. This com-

mand informs the Tid Server that it should look up a TID and

reply to the message sender. [For more discussion see the

manual pages for message commands]

The *data and datasize components of a message point to

additional message data. Continuing the msgTidQuery exam-

ple: the request to the Tid Server includes the symbolic

name of the task whose TID is desired. This information is

transmitted by setting the *data pointer equal to the char-

acter string containing the symbolic name, and datasize

equal to the length of the string.

Lastly, the message flags specify options for handling the

message such as whether to wait for a reply, who owns the

message data, and priority of the message. [For more dis-

cussion see the manual pages for message_flags] Functions

are available to assist in building a message and in defin-

ing values for individual members of the message struct or

individual fields of task ids and message flags.

struct MSG_TYPE

{

TID_TYPE dest ;

TID_TYPE source ;

CMD_TYPE command ;

void *data ;

int datasize ;

FLAG_TYPE flags ;

)

The final step in using the messaging system is to send out

!

|

Sun Release 4.1 Last change: 12 July 1991

!

|

msgLib(2) SYSTEM CALLS msgLib(2)

the message. The most basic form is msgSend which simply

takes a pointer to the message as an argument. In most

instances you will use msgSend or msgBuildSend (which,

predictably, is a combination of msgBuild and msgSend). Use

msgBroadcast to send a message to many tasks at once; the

broadcast can be limited to the local CPU or chassis, or may

be broadcast system-wide. To simplify error logging, the

msgErrorLog function sends a string to the Error Server.

The functions msgReply and msgAcknowledge are provided to

return information or to acknowledge a received message. A

rarely used function is msgPost; it is intended for low-

level routines that need to transmit a message with

ensurance that the sending task will not be delayed.

Message queue operations are provided to directly manipulate

local message queues. Normally, a task should only access

its own message queue.

Memory management functions provide means to manipulate

storage of messages and message data, and to build reentrant

event handler tasks.

To use the msgLib functions described here simply include

the header file msgLib.h at the begining of your source
code.

PROTOTYPES

STATUS msgAckAINIT

STATUS msgAcknowledge

int msgBroadcast

MSG_TYPE *msgBuild

int msgBuildSend

MSG_TYPE *msgCopy

void *msgDataCopy

void *msgDataKeep

int msgDefaultProc

STATUS msgDequeue

(TID_TYPE tid)

(MSG_TYPE *msg)

(MSG_TYPE *msg, FLAG_TYPE dest)

(MSG_TYPE *message,

TID_TYPE dest, TID_TYPE source,

CMD_TYPE command, void *data,

int datasize, FLAG_TYPE flag)

(TID_TYPE dest, TID_TYPE source,

CMD_TYPE command, void *data,

int datasize, FLAG_TYPE flag)

(MSG_TYPE *msg)

(MSG_TYPE *msg)

(MSG TYPE *msg)

(TID_TYPE rid, MSG_TYPE *msg)

(TID_TYPE tid, MSG_TYPE *msg)

Sun Release 4.1 Last change: 12 July 1991

msgLib(2) SYSTEMCALLS msgLib(2)

STATUS msgErrorLog (TID_TYPEtid, char *string)

FLAG_TYPE msgMemownerFlagSet (MSG_TYPE *msg, FLAG_TYPE flag)

STATUS

FLAG_TYPE

int

STATUS

msgPost (MSG_TYPE *msg)

msgPriorityFlagSet (MSG_TYPE *msg, FLAG_TYPE flag)

msgQueueCount

msgReply

FLAG_TYPE msgReplyFlagSet

STATUS msgRequeue

int msgSend

FLAG_TYPE msgSendFlagSet

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

TID_TYPE

msgTidGetChassis

msgTidGetCpu

msgTidGetLocal

msgTidQuery

msgTidSetChassis

msgTidSetCpu

msgTidSetLocal

FLAGTYPE msgTypeFlagSet

void *msgVarPtrGet

STATUS msgVarPtrSet

(TID_TYPE rid)

(MSG_TYPE *msg, void *data,

int datasize, FLAG_TYPE flags)

(MSG_TYPE *msg, FLAG_TYPE flag)

(TID_TYPE tid, MSG_TYPE *msg,

FLAG TYPE prty)

(MSG_TYPE *msg)

(MSG_TYPE *msg, FLAG_TYPE flag)

(TID_TYPE tid)

(TID_TYPE rid)

(TID TYPE tid)

(TID_TYPE rid, char *taskname)

(TID_TYPE rid, int number)

(TID_TYPE rid, int number)

(TID_TYPE rid, int number)

(MSG_TYPE *msg, FLAG_TYPE flag)

(TID TYPE t)

(TID_TYPE t, void *p)

SEE ALSO

message_commands(2) message_flags(2)

AUTHOR

Don Lefebvre

U

!

!

J

Sun Release 4.1 Last change: 12 July 1991

I

msgPost(2) SYSTEM CALLS msgPost(2)

NAME

msgPost - send message and return immediately

SYNOPSIS

STATUS msgPost (MSG_TYPE *msg)

MSG_TYPE *msg pointer to message to be sent

DESCRIPTION

msgPost copies the message and enqueues it for retransmis-

sion by the local Msg Server. By doing this msgPost can

ensure that the task sending the message will not be

delayed. However, because the message may sit in the Msg

Server queue for a while, the message itself may be delayed.

The msgPost function is primarily intended for low-level

routines which need to avoid unpredictable delays.

Sending a message while waiting for a reply is inconsistent

with the spirit of msgPost; hence, the REPLY_WAIT field of

msg.flags is ignored by msgPost.

RETURNS

OK or ERROR indicating success of enqueuing the

the Msg Server.

message at

SEE ALSO

msgLib(2) msgSend(2)

message_flags(2)

msgBuild(2) message_commands(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 4 June 1991 1

msgQueueCount(2) SYSTEMCALLS msgQueuecount2)

NAME
msgQueueCount- count messagesin local queue

w

SYNOPSIS
int msgQueueCount(TID TYPErid)

TID_TYPE tid - task id of queue owner

DESCRIPTION
msgQueueCountcounts the numberof messagesthat are waitlng

on the local message queue identified by tid.

Note that there is no checking that the input rid is local.

If the rid is not local, the result is unpredictable.

!

RETURNS

The number of messages in the message queue.

SEE ALSO

msgLib(2) msgDequeue(2) msgRequeue(2)

AUTHOR

Don Lefebvre

!

|

Sun Release 4.1 Last change: II June 1991

!

msgReply (2) SYSTEM CALLS msgReply(2)

NAME

msgReply - reply to received message

SYNOPSIS

STATUS msgReply (MSG_TYPE *msg

void *data ,

int datasize ,

FLAG TYPE flags

MSG_TYPE

void

int

FLAGTYPE

*msg - pointer to received message

*data - pointer to reply data

datasize - size of reply data

flags - message flags

DESCRIPTION

The msgReply function is used to reply to a received mes-

sage. Its primary uses are to respond to requests, and to

acknowledge synchronization messages.

When a task originates a message with the REPLY WAIT flag

set [See manual pages for msgSend] the task is blocked pend-

ing receipt of a reply. To unblock the originating task,

the receiving task MUST call msgReply or msgAcknowledge.

The data pointed to by *data of msgReply is sent via the

reply message and is received by the (now unblocked) ori-

ginating task as the return value of msgSend. However, the

*data pointer is ignored when replying to a broadcast mes-

sage; so msgSend must be used (AFTER acknowledging the

broadcast if required).

The flags argument can be used to specify message PRIORITY

or SENDWAIT fields; other options are ignored, in particu-

lar REPLY_WAIT. Unfortunately it is not possible to support

MEMOWNER RECEIVER for reply messages; thus reply data must

be managed explicitly by the application.

RETURNS

OK or ERROR indicating success of sending out reply.

SEE ALSO

msgLib(2) msgSend(2) message_flags(2) msgAcknowledge(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 3 June 1991 1

msgRequeue(2) SYSTEM CALLS msgRequeue(2)

NAME

msgRequeue - put message directly into local queue

SYNOPSIS

STATUS msgRequeue (TID_TYPE tid, MSG_TYPE *msg, FLAG_TYPE prty)

TID_TYPE

MSG_TYPE

FLAG_TYPE

tid - task id of queue owner

*msg - ptr to message to be requeued

prty - message priority

DESCRIPTION

msgRequeue enqueues a message on the local message queue

identified by tid. While it is possible to enqueue a mes-

sage to any task on the local CPU, it is recommended that a

task only manipulate its own message queue. One reason for

this recommendation is that msgRequeue bypasses the addi-

tional processing provided by msgSend such as blocking on

REPLY_WAIT.

Note that there is no checking that the input rid is local.

If the tid is not local, the result is unpredictable.

The message priority may have values of MF_PRI_NORMAL or

MF_PRI_URGENT, indicating whether the message will be placed

at the back or front of the message queue, respectively.

RETURNS

OK or ERROR indicating success of enqueuing operation.

!

SEE ALSO

msgLib(2) msgDequeue(2) msgQueueCount(2)

AUTHOR

Don Lefebvre |

Sun Release 4.1 Last change: ii June 1991

!

msgSend(2) SYSTEM CALLS msgSend (2)

NAME

msgSend - send message to event handler task

SYNOPSIS

int msgSend (MSG_TYPE *msg)

MSG_TYPE *msg - pointer to message to be sent

DESCRIPTION

msgSend is the most basic form of message passing, and the

most frequently used. The message pointed to by the func-

tion argument contains all of the information needed by

msgSend to route and handle the message.

struct MSG_TYPE

(
TID_TYPE dest ;

TID TYPE source ;

CMD_TYPE command ;

void *data ;

int datasize ;

FLAG_TYPE flags ;

The contents of a message are defined by the MSG_TYPE struct

shown above. The first two struct members are the TIDs of

the destination of the message and its source. Next is the

message command which describes the function of the message.

For instance, when the msgTidQuery function is called it

sends a message command of MSG_QUERY_TID to the Tid Server
on CPU 0. This command informs the Tid Server that it

should look up a TID and reply to the message sender. Users

can define their own commands, and are urged to read the

message_commands manual pages for a description of how to do

SO.

The *data and datasize struct members point to additional

message data. For instance, continuing the msgTidQuery exam-

ple, the request to the Tid Server includes the symbolic

name of the task whose TID is desired. This information is

transmitted by setting the *data pointer equal to the char-

acter string containing the symbolic name, and datasize

equal to the length of the string. The *data pointer is the

size of an integer, therefore integer data may be passed

directly in the message by casting *data to integer.

When a message destination is off the local CPU, msgSend

performs address translation of the *data pointer. There

are circumstances when address translation is not desired,

such as when *data is the data itself rather than a pointer.

Sun Release 4.1 Last change: 29 May 1991

|

msgSend (2) SYSTEM CALLS msgSend(2)

To accomodate these cases the following constants, defined

in msgLib.h, should be used as the datasize argument:

MS_KEEP_ADRS

MS_NONE

MS_CONVERT_ADRS

prevents address translation

- *data is ignored

forces address translation

Lastly, the message flags specify options for handling the

message. Message flags have five fields:

TYPE

PRIORITY

REPLY_WAIT

SEND_WAIT
MEMOWNER

- indicates normal, reply, or broadcast

- urgent msgs go to front of dest queue

- if set, task blocks and waits for reply

- optionally waits if dest queue is full

- specifies who deallocates message data

Message flags are created by OR'ing together defined con-

stants for each field - either in an assignment statement or

by using the flag building routines in msgLib. [See the

message_flags manual pages for a list of these defined con-

stants] For convenience, flags for the most common cases

have been defined. Most messages can use the predefined

standard flag:

MF_STANDARD = MF_TYPE_NORMAL J

MF_REPLY_WAIT_NO I

MFMEMOWNER_RECEIVER

MF_PRI_NORMAL I

MF SEND_WAIT NO I

As the above description suggests, one of the primary uses

of a message is to transmit a pointer to additional data.

The CIRSSE messaging system provides a means to manage this

"message data". The MEMOWNER field of msg.flags specifies

whether the sending task or the receiving task has the

responsibility for deallocating message data storage. If

MF MEMOWNER RECEIVER is chosen, then the storage allocated

to message data is AUTOMATICALLY deallocated by the event

handler shell following processing of the message. [Note

that the msgDataKeep function can be used by the receiving

task to prevent automatic deallocation] With

MF MEMOWNER_SENDER the sending task must deallocate message

data storage if desired, no automatic deallocation occurs.

For most messages, e.g. those using MF_STANDARD, the sending

(source) task allocates LOCAL storage for the message data,

sets msg.data to point to this local storage, and then sends

the message. The receiving (dest) task processes the mes-

sage, accessing the message data on the sending task's CPU

as desired, and then exits. When the receiving task exits,

its event handler shell will deallocate the storage space of

the message data (which may entail sending a message to the

sender's CPU requesting the deallocation). The deallocation

is performed automatically, and so the application developer

!

!

|

Sun Release 4.1 Last change: 29 May 1991

!

|

msgSend(2) SYSTEM CALLS msgSend(2)

need not-explicitly write code to manage this storage.

RETURNS

If reply flag set to REPLY_WAIT NO, msgSend returns:

OK - message was successfully sent out.

ERROR - error occurred during message passing; or

if SEND WAIT_NO is set, MsgDispatcher is

busy or destination task's queue is full.

If reply flag set to value other than REPLY_WAIT_NO:

msgSend returns *data from reply message (cast as

an integer).

SEE ALSO

msgLib(2) msgPost(2)

message_flags(2)

msgBuild(2) message_commands(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 29 May 1991

msgTidQuery(2) SYSTEMCALLS msgTidQuery(2)

NAME
msgTidQuery find task id from symbolic task name

SYNOPSIS

TID_TYPE msgTidQuery (TID_TYPE tid, char *taskname)

TID TYPE tid

char *taskname

- task id of task calling msgTidQuery

- symbolic name of task whose TID is

sought
!

DESCRIPTION

When an event handler task is created it is given a unique

task id, called a TID. This TID also identifies the chassis

and cpu on which the task is executing, and serves as an

address for routing messages to the task. Additionally when

the task is created, its symbolic name (specified in the

.vxconfig file) and associated TID are saved by the TID

Server so that any task on the system can later find the

task's TID.

The msgTidQuery function sends a message to the Tid Server

on CPU 0 requesting the TID of the task with symbolic name

*taskname. While msgTidQuery is waiting for a reply, the

task that called msgTidQuery is blocked. As there is a

potential delay, msgTidQuery should not be used within a

fast synchronous process, except during initialization.

\

RETURNS

If query is
*taskname.

successful, msgTidQuery returns the TID of

If query does not succeed, msgTidQuery returns 0.

SEE ALSO

msgLib(2) msgSend(2)

|

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 23 May 1991

msgTid macros(2) SYSTEMCALLS msgTid_macros(2)

NAME
msgTidGetChassis - get CHASSIS field of task id

msgTidGetCpu - get CPU field of task id

msgTidGetLocal - get LOCAL field of task id

msgTidSetChassis - set CHASSIS field of task id

msgTidSetCpu - set CPU field of task id

msgTidSetLocal - set LOCAL field of task id

SYNOPSIS

TID_TYPE

TID_TYPE

TID_TYPE

msgTidGetChassis {TID_TYPE tid)

msgTidGetCpu (TID_TYPE tid)

msgTidGetLocal (TID_TYPE tid)

TID_TYPE msgTidSetChassis (TID_TYPE tid, int number)

TID_TYPE msgTidSetCpu (TID_TYPE rid, int number)

TID_TYPE msgTidSetLocal (TID_TYPE tid, int number)

TID_TYPE tid - task id to be manipulated

int number - new value of TID field

DESCRIPTION

Every event handler task is given a unique task

when it is created. The TID has three fields:

id (TID)

CHASSIS - id of VME or Sun chassis (4 bits)

CPU - id of cpu on local chassis (4 bits)

LOCAL - id of task on local cpu (8 bits)

These functions are used to access the fields of a TID. For

instance, msgTidSetCpu will set the CPU field of a TID to a

specified value, and msgTidGetCpu will return the value of a

field.

Note that these functions are implemented as macros, and

that the TID argument is the actual variable not its

address. The following are legal statements and are

equivalent:

msg->dest = msgTidSetCpu (msg->dest, 0) ;

msgTidSetCpu (msg->dest, 0) ;

Sun Release 4.1 Last change: 3 June 1991 1

msgTid_macros(2) SYSTEMCALLS msgTid macros(2)

RETURNS
msgTidGet functions return the value of the TID field.

msgTidSet functions return the whole TID after setting the field.

J

SEEALSO
msgLib(2) msgSend(2) msgTidQuery(2)

AUTHOR
Don Lefebvre !

|

J

I

Sun Release 4.1 Last change: 3 June 1991 2

|

msgVarPtr(2) SYSTEM CALLS msgVarPtr(2)

NAME

msgVarPtrGet - get pointer to saved variables

msgVarPtrSet - set pointer to saved variables

SYNOPSIS

void *msgVarPtrGet (TID_TYPE t)

STATUS msgVarPtrSet (TID_TYPE t, void *p)

TID_TYPE t - task id of current event handler task

void *p - pointer to saved variables

DESCRIPTION

The msgVarPtr functions assist in building reentrant event

handler functions by associating a pointer with the current

instantiation of the function.

To define static variables for a reentrant event handler

function, follow these steps:

I. Define a structure to hold all static variables

2. During PINIT phase processing, allocate memory for the static

variable structure and initialize its members

3. While still in PINIT, save a pointer to this structure with

the msgVarPtrSet function

4. Use msgVarPtrGet at the beginning of the event handler

function to retrieve the pointer to the saved variables

structure, and reference all static variables through this

pointer.

RETURNS

msgVarPtrGet returns a pointer to the saved variable

ture, or NULL if task id is invalid.

struc-

msgVarPtrSet returns OK or ERROR indicating validity of task

id.

SEE ALSO

msgLib(2)

AUTHOR

Don Lefebvre

Sun Release 4.1 Last change: 16 July 1991 1

CIRSSE Technical Memorandum

To:

From:

Group:

Title:

Users/Developers of the MCS and VSS

Jim Watson

Motion Control Group

Using The CIRSSE Testbed Synchronous Service

Date: 9 May 1991

Number: 4 vers. 2

1 PURPOSE:

The CIRSSE Testbed Operating System (CTOS) contains those functions that are common between

the Motion Control System (MCS) and the Vision Services System (VSS). CTOS will be composed

of several fundamental building blocks to aid in the development of higher-level functions of CTOS

and the development of Testbed experiments and app].ications. The purpose of this memo is

to explain the synchronous service component, abbreviated CTOS-SS, that will be available on

both the MCS and the VSS. Any process that requires time-synchronization will use the CTOS-

SS. Thus, the synchronization service will be utilized by other developers of the MCS and the

VSS infrastructures and developers of Testbed experiments and applications. This memo provides

design and functional interface summaries for the synchronization service. This design has been

primarily motivated by application to the MCS, though it is intended to be general enough to be

useful in the VSS. Whenever possible, the similarities and differences of the synchronization service

between the two systems are noted.

2 DATA- VS. TIME-SYNCHRONIZATION:

The CTOS-SS is intended to manage the time-synchronization of various processes. Process

synchronization, however, is not limited to only time-synchronization, but also includes data-

synchronization. This section clarifies the difference between these two synchronization paradigms.

Consider the following scenario. The PUMA joint, angles are to be read and torques written

every 5 milliseconds. The reading and writing is accomplished by the PUMA channel driver. The

controller is a 6 joint PID algorithm that requires only its current state, current joint data, and

the current setpoints, and produces the output torques that are sent to the channel driver. The

setpoints are produced by an off-fine trajectory generator, and the PID controller maintains its own

state via private non-volatile variables. An automatic safety monitoring process runs in parallel,

checking the PUMA's actual position every 0.5 seconds.

In the above scenario, the channel driver and safety process would be termed time-synchronous,

whereas the PID controller would be data-synchronous (for sake of a simple discussion, the tra-

jectory generator is not considered). The distinction is made based on what makes the process

"runable." The channel driver needs to read angles and write torques at known time instances.

Likewise, the safety monitor is also "runable" periodically. However, the periodicity of the PID

controller is only implied by its coupling with the channel drivermthe PID controller is really "run-

!

!

\

|

I

m

!

able" when the jointdata and setpointdata have become available.One could massage the PID

controllerinto a time-synchronous process,but as soon as the time-synchronous PID controller

becarne "tunable,"itwould have to wait untilthe jointand setpointvalueswere guaranteed to be

fresh.

There is no doubt that the PID controllerneeds to be efficientand finishits computations

in a timelymanner. However, sinceprocessescan be momentarily swapped out by the VxWorks

scheduler,itisbettertoconsiderthe PID controlleras partof a data-synchronous paradigm rather

than a time-synchronousparadigm. In eithercase,the PID controllerand channeldriverare inlock-

step,but with the PID controlleras data-synchronizedand the channel driverastime-synchronized,

the detectionand handling of tardy torque computations can be made in the channel driver.

3 SYNCHRONOUS SERVICE DESIGN:

This sectionbrieflydescribesthe designof the CTOS-SS, without providing too much detailthat

would only confusethe issue.Understanding ofthe designbasicsisnecessarytotake fulladvantage

of the serviceand to use the provided functionseffectively.The discussionisprimarilycentered

around the MCS. It is unlikelythat the backplane._of the MCS VME Cage and the VSS VME

Cage willbe directlyconnected. Therefore,the CTOS-SS, whileidenticalon the two systems,will

probably functionindependently. The issueof how the MCS-SS and VSS-SS willcommunicate

is largelyunresolved and spans many aspectsof the CTOS, includingdata exchange, common

addressing,shared resources,etc.

The MCS VME Cage consistsof fiveCPU boards (CPUBs), numbered CPUB 0 to CPUB 4.

The fiveCPUBs are functionallyidentical,with the exceptionthat CPUB 0 servesas the network

gateway for the VME Cage. The current MCS architectureassumes that the user willhave no

processesrunning on CPUB 0. Among other things.CPUB 0 willservea specialfunctionfor the

CTOS-SS. This functionalityisdescribedbelow. No otherassumptions about the MCS architecture

are made in the followingdiscussion.

The MCS-SS consistsof two major functionalareas:management of the MCS system clock,

and management of time-synchronous processeson CPUBs I through 4. The system clock is

conceptuallysimplerand isdiscussedfirst.

3.1 System Clock

The MCS system clock measures relativetime sincethe beginning of an experiment, i.e.,since

the time at which the clock was turned on. The clock has two states:on and off.The current

time can be accessed via the function syncClkTimeGe'c(), whereby time ismeasured in integer

multiplesof 0.1 milliseconds.This atomic unit is referredto as an MCS Time Unit, in short,

MCS-TU, and cannot be changed by the user.Choo._ingthisvalueforthe MCS-TU was a trade-off

between representingsufficientlylong experiments with a single32-bitclock registerand having a

fineenough grin for time-synchronizationof high frequency processes.The maximum lengthof

an experiment istherefore0.1ms •232,approximately.111 hours.

Distinctfrom the MCS-TU isthe actualrate at which the clockregisterisupdated, i.e.,the

MCS clockupdate rate (MCS-CUR). Hardware limitationspermit update ratesbetween 32 and

5000 Hz, i.e.,periodsof 0.2 to31.25 milliseconds.However, additionalconsiderationsalsoinfluence

the choiceof the MCS-CUR. For purposes of PUMA control,itis known that the encoders are

updated every 0.9 milliseconds.Thus, preferablechoicesforthe clockupdate period,(MCS-CUP

= I / MCS-CUR), would be 0.3,0.9,1.8.2.7,etc.,milliseconds.Regardless of the actualchoice

2

l

for the MCS-CUR, syncClkTimeGe_() returnsthe number of MCS-TUs that have elapsed. The

currentMCS designdoes not allow the userto modi_' the MCS-CUR.

Since connection of the two VME Cage buses isunlikely,the VSS VME Cage willprobably

maintain itsown system clockand associatedclockupdate rate.Thus, the VSS-TU and VSS-CUR

would be chosento be compatible with visionsynchronizationfrequencies(visionapplicationswould

probably preferthe clock update frequency to be a multipleof 30 Hz). Issuesof coordinatingthe

clockstartson both systems, and how turningoffthe system clockon one Cage should affectthe

other system clock are stillopen. These types of operationswillprobably best resideat a higher

levelin the intelligentmachine hierarchy.

Most experimentswillbe run inreal-time,thatis.theelapsedtime reflectedin the clockregister

willagreewith the elapsedtime on someone's (working)wristwatch. However, given the possibility

thatthe MCS willbe drivinga Testbed simulatorratherthan actualhardware, itmay be usefulto

run an experiment slowerthan real-time.So that the applicationcode would not have to change

with the corresponding change from real-timeto slow-time,the clockregisterupdate ratecan be

modified by an integer"time scale,"MCS-TS. MCS-TS is the number of ticksto be ignored by

the clockregisterplus 1. Thus, ifMCS-TS isi,the clockisupdated in real-time---ifMCS-TS is2,

then syncClkTimeGet() would indicatethat r MCS-TUs have elapsed,whereas your trustywrist

watch would indicatethat 2r MCS-TUs have elapsed.In other words, MCS-TS times the return

value of syncClkTimeGet() is always the number of MCS-TUs that have elapsed in real-time.

While Testbed simulationcapabilityissomewhat in the future,time scaling,which isalsouseful

for debugging, isavailabletoday. A functionto set MCS-TS isavailableto the user,(seesection

4).
The lastissueregarding the system clockisitsphase. Simply put, a delay between turning

on the clock and registeringthe firsttickmay be desirablefor the initialsynchronization--this

delay isreferredto as clock phase (MCS-CP). Explicitly,the MCS-CP isthe initialvalue of the

tickcounting registeris the system clock routine.Thus, MCS-CP should be set to one plus the

number ofticksto be initiallyignored by the clockregister,(e.g.,MCS-CP equal to I resultsin an

immediate update afterturningon the clock;and MCS-CP equalto 10 would cause the firstclock

registerupdate to occur after10 MCS-CUPs have elapsed).A functionto set MCS-CP isavailable

to the user,(seesection4).

To summarize, the MCS system clockiscontrolledby an on/offflag,itsupdate rate,the clock

phase and time scale.The clock phase influencesstart-upbehavior,and the time scaleinfluences

steady-statebehavior. The clock update rate and clock update period are relatedto the grain

of the clockregister.Independent of allof theseparameters,system time isalways measured in

MCS-TUs, which correspond to 0.1 milliseconds.

3.2 Time-Synchronous Processes

Each of the four user CPUBs, (i.e., CPUBs 1 through 4), may have up to five time-synchronous

processes that axe supported by the MCS-SS. Note, in the following, the word synchronous will be

used to mean exclusively time-synchronous.

CPUB 0, in addition to maintaining the MCS system clock, aids the other CPUBs to maintain

their synchronous processes. CPUB 0 maintains flags to determine whether the system clock is

currently on or off, and whether process synchronization is currently enabled or disabled. Fig-

ure 1 depicts the states of these flags and the functiolts to change their states. Note that process

synchronization can be enabled or disabled with the clock on, however, the clock must be on to

enable process synchronization. If process synchronization is enabled, each clock register update

!

!

3

!

clock off z_ syncclkoff

,roe
disabled _yncClkOn 1

syncClkOff

proc synch'i ng

disabled |syncClkProc_

syncClkProcOn

clock on
and

proc synch'ing
enabled

Figure 1: Clock/Process Synchronization State Diagram

is accompanied by an interrupt sent to CPUBs 1-4. Thus, the synchronous processes are affected

by MCS-TS is a way similar to the system clock, again minimizing code changes associated with

time-scai/ng.

Having received this interrupt, each CPUB manages its local synchronous processes indepen-

dently. Since the functionality of the CTOS-SS as seen from each of the CPUBs is identical, the

remaining discussion is given based on a single CPUB.

Assume that a process is currently being synchronized by the local synchronous process handler,

LSPH. How this process would go about "attaching" itself to the LSPH is discussed below. Each

process handled by the LSPH has two tasks and two semaphores associated with it. The two tasks

are the synchronous task and the overrun task, and each is unblocked by one of the two semaphores.

(NOTE: pay careful attention to the distinction between synchronous process, synchronous task,

and overrun task. The former embodies the latter two.) The LSPH maintains a countdown timer

for each process. When this timer expires, the LSPH would normally make the synchronous task

"tunable" by "giving" the synchronous task semaphore, and reset the timer. The synchronous task

could then carry out its function. Under some hopefully rare circumstances, the timer could expire

and the LSPH would instead make the overrun task "'runable" by "giving" its semaphore. These

circumstances include the case that the LSPH detects that the synchronous task has not completed

its function from the previous timer expiration and the case that the user wants to force the overrun

task to execute. Thus, in normal operation the synchronous task would become "runable" with

user specified periodicity, and the overrun task would never become "runable."

While the above gave a functional overview of how process synchronization occurs, issues of

attaching processes, determining periodicity, detecting overruns, and the design of synchronous

and overrun tasks have to be discussed. One important note to make is that the synchronous and

overrun functions execute as normal VxWorks tasks, not as interrupt-level functions, and thus can

take full advantage of VxWorks and CTOS. Attaching a process is the mechanism by which the
LSPH can maintain its data structures and determine what actions to take when various timers

expire. At current design, up to five synchronous processes can be attached on each CPUB.

The LSPH needs to know the functions that will serve as the synchronous and overrun tasks,

and the semaphores that can unblock these tasks. Additionally, there needs to be a guarantee that

the tasks have been successfully spawned, have completed their initialization and are waiting at

their blocks, before they are made "runable" the first time. Lastly, the LSPH needs to know the

frequency of synchronization and how to detect overruns. All of these issues, with the exception of

detecting overruns, are handled straightforwardly by providing the correct information in a function

call to the LSPtt. In the case that the user does not want to provide an overrun task, the LSPH

m

willassociatea system defaultoverrun task to the synchronousprocess.Two defaultoverrun tasks

axe available:one task presumes that overruns are serious, and thus attempts to shutdown the

MCS; a,uothertaskpresumes thatoverruns are mild. and thus generatesan errormessage thatcan

be logged and/or detected by the user. The use of the defaultoverrun tasks axe indicateby the

parameters SYNC_0'_rR_SERIOUSand SYNC_0VR_MILD, respectively.

Overrun detectionis accomplished by the followingparadigm. Immediately after the syn-

chronous task becomes "tunable,"a flagis set to TRUE, i.e.,true that the functionisexecuting.

Having completed the function,thisflagisset to FALSE immediately priorto the task block.The

addressofthisflagismade availableto the LSPH. Thus, beforethe LSPH unblocks the synchronous

task,thisflagischecked and ifitisTRUE, the overrun taskisunblocked. Otherwise, the flagisset

to TRUE by the LSPH and the synchronous taskisunblocked.

The followingpseudo-code fragments illustratethe stepsinvolvedin attachinga process and

designing tasks that conform to the paradigm describedabove. The lastsectionof thismemo

summaxizes the actualfunctionsthat can be used to perform much of thiscode.

I

/*pseudo-code to perform synchronous task*/

void mySyncTask(SEM_ID block, B00L *pointer_to_running_flag)

<do initialization of synchronous func_ion...rhaZ is, code that>

<will only execute once immediately after this task is spawned>

loop forever,

*pointer_to_running_flag = FALSE;

semTake(block, WAIT_FOREVER); l*VxWorks indefini=e block*/

<do function :ha_ needs _o be synchronized>

end loop;

}

/*pseudo-code _o perform overrun task*/

void my0verrunTask(SEM.ID block)

{
<do initialization of overrun funcrion...that is, code that>

<will only execute once immediately after this task is spawned>

semTake(block, WAIT_FOREVER);

<do function to handle overruns in synchronous function>

<possible loop back to semTake, if overrun is nor major error>

)

5

I

/*pseudo-code to attach synchronous process*/

SEM_ID seml. sem2;

BOOL running_flag;

int task1, task2;

SYNC_HANDLE sync_proc_handle;

/*declarations*/

/*declarations*/

/*declarations*/

/*declarations*/

< °o, >

seml= semBCreate(SEM_Q_PRlORITY, SEM_EMPTY); /*VxWorks semaphore creation*/

sem2 = sen_BCreate(SEM_Q_PRIORITY, SEM_EMPTY); /*VxWorks semaphore creation*/

task1 = <spawn synchronous task wi_h VxWorks _askSpawn including

arguments of seml and running_flag>

task2 = <spawn overrun task with VxWorks taskSpawn including

arglunents of sem2>

syncTaskBlockOuarantee(taskl)

syncTaskBlockGuarantee(task2)

/.guarantee taskl blocking*/

/*guarantee task2 blocking*/

rurming_flag = FALSE; /*set overrun detection flag to false*/

/.Attach synchronous process to the LSPH using task1 as the synchronous

**zask, task2 as the overrun task, a phase of 1, and a period of 1000./

sync_proc_handle = syncProcAttach(seml, task1, sem2, task2,

Rrunning_flag, 1, 1000)

< ... >

syncProcEnb(sync_proc_handle);

< ... >

/*enable the synchronous process*/

Finally, the issues of enabLing/disabLing an individua/synchronous process, and determining its

period and phase, are discussed. When a synchronous process is attached, it is initially disabled.

Thus, its countdown timer is not affected by clock upda.te interrupts, aad neither its synchronous or

overrun tasks are unblocked. Enabling a synchronous process makes its countdown timer responsive

to the clock interrupts. Reca/l, though, that these interrupts are not generated unless process

synchronization has been enabled on CPUB 0. Th,s. there is a two-layer hierarchy for enabling

and disabling process synchronization. CPUB 0 serves as a master switch, with the ability to

disable symchronization system-wide. Only when process synchronization on CPUB 0 has been

enabled and a synchronous process has been individually enabled with the LSPH, will unblocking

of the synchronous task occur.

Two pazameters used when attaching a synchronous process are its phase and period. The

phase is the start-up delay, i.e., the initial value of the countdown timer. If immediate action is

needed after enabling the synchronous process, then the phase should be 1. The period is the reset

value of the countdown timer. A subtle use of the phase is to minimize thrashing in the VxWorks

scheduler among synchronous tasks that have the same period. For example, say two synchronous

processes each have periods of 9 milliseconds. If both processes had equal phases, then every 9

milliseconds, the VxWorks scheduler would have to deal with two tasks unblocking at the same

instant, and thus give each task CPU time slices. Switching between tasks consumes CPU time.

However, if one process had a phase of 1, and the other had a phase of, say 3, then the first task

would have 2 milliseconds of uncontended CPU time. If the first task could finish in this period,
then when the second task was unblocked, it would also have uncontended CPU time.

Local disabling of a synchronous process can be achieved in a variety of ways. Disabling is

required before the process can be detached from the LSPH. The user can call sy'acProcDis()

to change the state of the synchronous process from enabled to disabled, thereby causing the
countdown timer to ignore interrupts, and the synchronous and overrun tasks to remain blocked.

Re-enabling a synchronous process is allowed. Prior to re-enabling, functions are available to the

user to inspect and modify the period and current value of the countdown timer for the synchronous

process. Upon re-enabling, the countdown timer is not reset, and thus acts as a re-enab].ing phase.

Since some of the synchronous tasks may have high frequencies, it may be difficult to generate the

disable function call exactly when needed. The user is allowed to make a disable pending on a

system clock time, whereby the synchronous process will be disabled at the first attempted unblock

that occurs at system time greater than or equal to the pending time.

Whenever the overrun task is unblocked, the synchronous process is disabled im-

mediately. Overruns can be generated by the user either immediately or with a pending time. Of
course, the overrun task is automatically unblocked if an overrun condition is detected.

To summarize, the local structure of synchronous processes involves a synchronous task, a over-

run task, two semaphores for unblocking, a flag to detect overruns, and states of attached/detached,

enabled/disabled/disable_pending, and overrun occurred/not_occured/pending. Period and phase

parameters control the response of the synchronous task to the clock interrupts.

4 SYNCHRONOUS SERVICE FUNCTIONAL INTERFACE:

This section describes the CTOS-SS function calls currently available. All of these functions axe

not directly callable from application codes--protect,,d functions, and can only be accessed via

messages to the system clock message handler, (also called the P0 message handler for historical

reasons). It is important to note when local versus global data structures axe being manipulated.

As a general rule, the system clock functions work with global data structures, whereas the process
synchronization functions work locally.

The first subsection below presents the higher-level ['unctions, which will typically be used by the

MCS applications programer. The second subsection presents the lower-level functions, which will

be used by experienced MCS applications programmer and the MCS developers. It is important

to understand the functionality of the protected functions, although they can only be accesseb

by the MCS applications programmer via message passing. These functions appear in the third
subsection.

I

!

|

I

4.1 High-level Functions

£nt syncClkS_ca'cus(void)

returnsthe statusof the system clockingusing the followingbitcoding:

• the leastsignificantbit(LSB) indicateswhether the system clockison or off----onisa i. The

bitmask SYNC..HASK_CLOCK_0Ncan be used.

• the nextmost significantbitindicateswhether processsynchronizationisenabled or disabled--

enabled isa i. The bitmask SYNC.MASK_PS_ENABLED can be used.

Note that the return value 10 binary indicatesan illegalstate.

int syncClkScaleGe_c(void)

returnsthe wlue of MCS-TS, the time-sca:ingfactor.MCS-TS is not changeable once the clock

has been set.The userisresponsibleforset:ingthe valueofMCS-TS beforethisfunctioniscalled.

The returnvalue of -1 indicatesthat the MCS-TS ha._not been setyet.

in_;syncC1kTimeGe_c(void)

returnsthe number of MCS-TUs that have elapsedsincethe clockwas turned on.

void syncClk0ff(void)

disablesprocesssynchronizationand turns offthe system clock,regardlessof theirstatespriorto

the call.

void syncClkProcDis(void)

disablesprocesssynchronizationwithout affectingthe currentstateof the system clock.

VOID syncTaskBlockGuaran_cee(in'ctask_id)

delaysuntilthe task with VxWorks task id _:ask_idisknown to be spawned and blocking on a

semaphore.

STATUS syncFlagSemTake(SEM_ID sere, BOOL ,running_flag)

8

provides the application code with a compact call to set the running flag to FALSE and then do a

VxWorks semTa.ke (sere, WAIT_FOREVER). The return code is the return from the s emTake function.

SYNC_HANDLE syncProcSpa_n(

SEM_ID *pSync_sem,

char *pSync_name,

SEM_ID *pOr_sem,

char *pOt_name,

BOOL *flag,

VOIDFUNCPTR pSync_func,

in_ sync_arg,

VOIDFUNCPTR pOr_func,

in_ or_a/g,

in_ phase, int period)

provides a higher-levelof support than syncProcA1:1:ach for attaching synchronous processes. This

function will do all of the necessary semaphore creation and task spawning and blocking. The

default overrun process is used if p0r._unc is NULL, in which case p0r..name is arbitrary and

or_a/g isused to indicate the severity of overruns for thisprocess (i.e.,either STNC_0VR..SERIOUS or

SYNC_0VR_MILD). The synchronous handle or ERROR is returned. The semaphore addresses, i.e.,

SEM_IDs are written to pSync_sem and p0r_sem (ifthe default overrun task isnot used). The tasks

are spawned with MCS default arguments. The user can specify an additional integer argument

for each task.

!

STATUS syncProcDe_ach(SYNC_HANDLE n)

deletes the synchronous process in the LSPH data str,cture. The synchronous handle n is used to

refer to the process, and it must be disabled. The associated semaphores and tasks are deleted.

The return code indicates the success of the detach.

STATUS syncProcRemove(SYNC_HANDLE n)

removes the synchronous process in the LSPH data structure,without deleting the associated tasks

or semaphores. The synchronous handle n isused to referto the process, and it must be disabled.

The return code indicates the validity of success of the removaJ.

|

STATUS syncProcEnb(SYNC_HANDLE n)

enables synchronous process with handle n. Successflflenable requires that the process phase and

period have been set to values greater than or equal to 1, and the synchronous and overrun tasks

axe blocking. The overrun pending and disable pending flags axe set to FALSE. The return code

indicates the success of the enable.

STATUS syncProc0nce(SYNC_HANDLE n)

!

is identical to syncProcEnb except the disable pending flag is set to TRUE, thus resulting in only

one unblock of the synchronous task.

STATUS syncOverrunForce(SYNC_HANDLE n)

unblocks the overrun task associated with process n. This function returns immediately, with the

return code indicating the validity of n. If the process is currently enabled, the overrun pending

flag is set to TRUE. Thus, on the next period, the overrun task will be unblocked. If the process

is currently disabled, the overrun task is unblocked immediately.

STATUS syncOverrunNow(SYNC_HANDLE n)

is identical to syncOverrunForce except regardless of the state of the synchronous process, the

overrun task is unblocked immediately.

STATUS sync0verrunPosz(SYNC_HANDLE n, inz zime)

requiresthat synchronous processn be enabled, and willunblock the overrun task atthe firsttime

the countdown timer expireswith the system time greaterthan or equal to zime. Ifthe system

time isa£readygreaterthan or equal to zimQ, or ifthe synchronous processisdisabled,or ifthe

handle isinvalid,then ERROR isreturned.Successfulpostingofthe overrun resultsin the overrun

pending flagbeing setto TRUE. Specialcase:rime of0 causesthe overrun pending flagto be set

to FALSE and any previouslypending overrun to be disregaxded--thereturncode isOK, unless

the handle isnot validor the processisnot enabled.

STATUS syncProcDis(SYNC_HANDLE n)

disablesthe synchronous task associatedwith processn. That is,no more unblocks of the syn-

chronous taskoccur,however, ifthe synchronous taskisstillexecutingdue to the previousunblock,

itsexecutioncontinues.The returncode isOK unlessn isan invalidprocesshandle.

10

STATUS syncProcDisPos_(SYNC_HANDLE n, in_ _ime)

sets the disable pending flag of process n to TRUE. This wiLl allow the synchronous task to finish

any current execution and be unblocked until the system time is greater than or equal to ti_e,

at which time it is disabled. The return code is OK unless n is an invalid process handle, or the

process is not enabled, or the system time is already greater than or equal to tL_e. Successful

posting of the disable results in the disable pending flag being set to TRUE. Special case: time

of 0 causes the disable pending flag to be set to FALSE and any previously pending disable to be

disregarded--the return code is OK, unless the handle is not valid or the process is not enabled.

W

in% syucProcStatus(SYNC_HANDLE n)

returnsthe bit-codedstatusof processn. The followingbitsaxe used:

• the least significant bit (LSB) is 1 if the handte is valid. If this bit is 0, the other bits are

meaningless. The bit mask SYNCAIASK..HNDL.VALID can be used.

• the next most significantbitis1 ifthe synchronousprocessisenabled. SYNC..MASK..PROC..ENABLED
can be used.

• the nextmost significantbitisiifthedisablependingf}agisTRUE. SYNC_MASK..PROC..DIS..PEND

can be used.

• thenext most significantbitisiifthe overrunpen dingflagisTRUE. SYNC_MASK_PROC_0VR..PEND
can be used.

!

B00L syncTableVacancy(void)

returnsTRUE ifthereisa vacancy in the LSPH entry"table.

!

SYNC.HANDLE syncSyncTaskIdToHandle(in_ _ask_id)

SYNC_HANDLE sync0vrTaskIdToHandle(int _ask_id)

SYNC_HANDLE syncSyncSemIdToHandle(SEM_ID sem_id)

SYNC_HANDLE syncOvrSemIdToHandle(5EM_ID sem_id)

return the synchronous process handle given various data that are maintained by the LSPH. A

return code of ERROR indicates that the handle could not be identified in the set of currently

attached processes (prgcesses with enabled and disabled synchronous tasks are both considered).

|

!

11

I

4.2 Low-level Functions

BOOL syncTaskBlocking(int _ask_id)

returns immediately with TKUE indicating that VxWorks task with id "cask_id is currently in the

VxWorks task table and is not ready, i.e., blocking on a semaphore.

void defaul__overrun_taskl(SEM_ID blockID, int loca/.Oror_Num.

in_ syncVXWTaskId)

is one of the function choices for the default overrun task. This function is never called directly by

the application code. It is attached by the LSPH as the overrun task in cases when the user does

not provide an overrun task for a particular synchronous process and indicates that overruns are

serious. If syncProcSpawn is used with an user supplied overrun task, the argument list for the

overrun task should be the same as above with the addition of an integer argument (this argument

is specified by the user in the call to syncProcSpawn).

void default_overrun_task2(SEM_ID blockID, in_ localProcNum.

int syncVXWTaskld)

is one of the function choices for the default overrun task. This function is never called directly

by the application code. It is attached by the LSPH as the overrun task in cases when the user

does not provide an overrun task for a particular synchronous process and indicates that overruns

are mild. If syncProcSpawn is used with an user supplied overrun task, the argument list for the

overrun task should be the same as above with the addition of an integer argument (this argument

is specified by the user in the call to syncProcSpawn).

SYNC_HANDLE syncProcA=_ach(SEM_ID sync_sem, int sync__ask_id,

SEM_ID or_sem, in= or_:ask_id,

BOOL *flag, in_ phase, in= period)

is the lowest-level support function for attaching a synchronous process to the LSPH. The return

code is the synchronous handle, with ERROR indicatit_g an unsuccessful attach. The synchronous

semaphore must have been created and the synchronous task spawned and blocking prior to calling

this function. The task spawn arguments were completely up to the discretion of the application

code. If the default overrun task is desired for this process, then or_sere should be NULL, and

or_l;ask..id should indicate the severity of overruns for this process (i.e., either SYI_C_OVR....SEI_.IOUS

or SYNC_0VR..MILD). Otherwise, the overrun task should have been spawned and blocking prior to

this call. The synchronous process phase and period are also set by this function.

12

in1: syncProcPeriodGet(SYNC_HANDLE n)

returns the period for the synchronous process with handle n. The return of ERROR (-I) results

ifn isnot valid.

STATUS syncProcPeriodSet(SYNC_HANDLE n, int per)

attempts to set the period for synchronous process n to per. The return of ERROR results if n is

not valid, or the synchronous process is enabled, or per is not greater than 0.

int syncProcCounterGet(SYNC_HANDLE n)

returns the value in the countdown timer for the synchronous process n. The return of ERROR

(-1) results if n is not valid or if the synchronous process is enabled.

!

STATUS syncProcCounterSe%(SYNC_HANDLE n, int cn_)

attempts to set the countdown timer for synchronous process n to cnt. The return of ERROR

results if n is not valid, or the synchronous process is enabled, or cnt is not greater than 0. Setting

the countdown timer prior to re-enabling acts like a re-enabling pha_e.

VOIDFUNCPTR syncUsrISRA_ach(VOIDFUNCPTR f)

attaches the spedfied function to the LSPH's ISR. The function f will be called at interrupt-level

with no arguments with the receipt of every location monitor interrupt from CPUB 0. Thus calls

to this function axe affected by time-sca_ing. The return value is the pointer to the current function

attached. Any function chaining is the responsibility of the caller. The NULL pointer indicates no

function.

!

|

V01DFUNCPTR syncUsrlSRClear(void)

behaves likesyncUsrlSRAttach(NULL).

R

13

!

4.3 Protected Functions

STATUS syncPOIni'c(void)

puts the system clock and process synchronization data structures in a known state. This function

is not available to the application code, and is used internally by the MCS bootstrap. After this

call, the values of clock phase and scale are set to illegal values, thus requiring the user to perform

explicit initialization. The clock is off and process synchronization is disabled. This function also

attaches the clock interrupt service routine (ISR.) to the Motorola-135 auxiliary clock chip and

enables the location monitor interrupts. The return code indicates the _Hcces6 of attaching to the

clock and enabling the interrupts. This is a protected function.

STATUS syncClkPhaseSet(int n)

sets the MCS-CP, which is the initial delay (in integer multiples of CTOS-TUs) between the call

to syncClk0n or syncClkProcOn and the first update of the system clock register. A phase of 1

indicates no delay. Setting the clock phase can only be done once per experiment, and must be done

before calls to turn on the clock will be successful. Setting the clock phase to 1 can be achieved via

syncClkRese_. This is a protected function.

STATUS syncClkScaleSet(in_ n)

sets the time scale of the system clock, i.e., MCS-TS. Setting the time scale can only be done once

per experiment, and must be done before calls to turn on the clock will be successful. Setting the

time scale to 1 can be achieved via syncClkResel:. This is a protected function.

STATUS syncClkReset(void)

sets MCS-CP to 1, MCS-TS to 1, and the clock register to 0. This can only be done if the clock is

off, and the return code indicates if the function was successful. This is a protected function.

STATUS syncClk0n(void)

turns on the system clock and leaves the process synchronization disabled. The clock must currently

be in the off state, and the phase and scale must have values greater than or equal to 1. The return

code indicates if the function was successful. This is a protected function.

14

STATUS syncClkProcOn(void)

enablesprocesssynchronizationand turnson the system clock.The clockmust currentlybe in the

offstate,and the phase and scalemust have valuesgreaterthan or equal to I. The return code

indicatesifthe function was successful.This isa protectedfunction.

STATUS syncClkProcEnb(void)

enablesprocesssynchronization.The system clockmust currentlybe on and processsynchroniza-

tioncurrentlydisabled.The returncode indicatesifthe functionwas successful.This isa protected

function.

STATUS syncProcInit(void)

puts the LSPH data structuresin a known state.This functionisnot availableto the application

code and isonly calledinternallyby the MCS bootstrap. This function alsoenables location

monitor interruptsfor the CPUB, and the returncode indicatesthe successof thisoperation.This

is a protected function.

5 ANALYSIS OF SYSTEM CLOCK ERRORS:

This sectiondescribesthe circumstances under which an errorbetween the system clockand real-

time may occur. Assume for the moment that the"time scale,i.e.,MCS-TS, isset to 1. Then

the valuein the system clockregistershouldreflectreal-timeas measured in the MCS-TU of 0.1

milliseconds.

The auxiliaryclockchip used to maintain the system clockhas the followinglimitations:

• auxiliaryclockinterruptscan be requestedto have integerfrequencyfr 6 [32,5000]interrupts

per second.

• the cryst_lin the auxiliaryclockchiposcillatesat 2,048,000Hz.

• interruptscan only be generated afteran integernumber of oscillations,c 6 A/"have been

counted in the chip.

Thus, the auxiliaryclockchip reallycounts oscillationsof itsinternalcrystaland aftera specified

number of these oscillations,an interruptisgenerated. The actualperiod between interruptsis

given by

where c = int(2048000/fr).

C
Ta = seconds,

2048000

Consider the case that we want to generate interrupts every 0.9 milliseconds. Since 1/0.0009 =

1111.11, we can chose f_ to be 1111 or 1112. Using f_ = 1111, results in c = 1843, and T_ =

0.000899902 seconds. Thus. after the system clock register is updated 1111 times, its value will be

!

15

9999 MCS-TUs (equivalentto 0.9999seconds),but only 0.99979seconds willhave actuallyelapsed.

The relativeerroris0.01%, a very small amount.

Now considerthatwe want to generateinterruptsevery4.5milliseconds.Then after222 updates

ofthe system clockregister,itsvalue would be 9990 MCS-TUs (equivalentto 0.9990 seconds),but

really0.9999756 seconds willhave elapsed. This resultsin a relativeerrorof 0.1%, stilla small

amount, but an order of magnitude largerthan above. Furthermore, the relativeerror associated

with generatinginterruptsevery 0.3millisecondsis0.07%. Note thatno errorisincurredif2048000

isdividedby/_ with no remainder. The amount of relativeerrorisobviouslycyclic.

Itshouldbe clearthattime scalingwillnot improve or worsen the relativetiming errors.For an

example, considerthat MCS-TS is2, and we are generatinginterruptsevery 4.5 milliseconds.After

444 interrupts,thesystem clockregisterwould have been updated 222 times,therebyindicatingthat

9990 MCS-TUs (equivalentto 0.9990seconds).In reality,1.99995seconds would have elapsed.The

relativeerroriscomputed based on the 1.99995secondsthatreallyelapsedand the 2.0.9990 - 1.998

seconds that should have elapsed.This relativeerrorisagain 0.1%.

6 CODING EXAMPLES:

The purpose of this section is to present explicit coding examples, whereby actual function calls

are illustrated without the use of pseudo-code. Meaningful examples that are applicable to robot

control require the functional interface specifications for the Message Passing Service, Robot State

Manager, and the Channel Drivers. These interfaces are.not currently available, therefore, the

completion of this section is postponed for a future version of this memorandum.

16

ipbLib(2) SYSTEM CALLS ipbLib(2)

NAME

ipbUnblock - Unblock processes blocked on an IPB

SYNOPSIS

void ipbUnblock(IPB_FLAG flag, IPB_STATE mode);

IPB_FLAG flag;

IPB_STATE mode;

/* IPB to unblock */

/* State in which to leave IPB */

l

DESCRIPTION

The ipbUnblock(2) function will release all processes that

are currently blocked on the specified IPB. If the mode

argument is IPB_CLEARED, subsequent "takes" on that IPB will

not block until and ipbSet(2) on that IPB is called. A mode

of IPB_RELEASED will cause only those processes currently

waiting on the IPB to be realesed, immediately following

"takers" will be blocked.

The ipbUnblock(2) function will release all processes that

are currently blocked on the specified IPB. If the mode

argument is IPB_CLEARED, subsequent "takes" on that IPB will

not block until and ipbSet(2) on that IPB is called. A mode

of IPB_RELEASED will cause only those processes currently

waiting on the IPB to be realesed, immediately following

"takers" will be blocked.

!

INCLUDE FILE

ipbLib.h !

SEE ALSO

ipbLib(2), ipbCreate(2), ipbTake(2),

mbxAuxLib(2)

AUTHOR

Keith Fieldhouse

ipbSet(2), msgLib(2),

|

m

Sun Release 4.1 Last change: 17 July 1991

l

ipbLib(2) SYSTEM CALLS ipbLib(2)

NAME

ipbTake.c - Take an Inter Processor Block

SYNOPSIS

void ipbTake(IPB_FLAG flag);

IPB_FLAG flag; /* The IPB Flag to take */

DESCRIPTION

The ipbTake function simply attempts to take an IPB. If

that IPB is in the BLOCKED state, the calling process is

blocked on a local VxWorks binary semaphore. The process

will not be made runnable again until some process, some-

where on the VME cage calls ipbUnblock on that IPB.

If the ipb is note in the BLOCKED state, the process simply

continues.

NOTE

The state of and IPB is never altered by an ipbTake call.

INCLUDE FILE

ipbLib.h

SEE ALSO

ipbLib(2), ipbCreate(2),

msgLib(2), mbxAuxLib(2)

AUTHOR

Keith Fieldhouse

ipbSet(2), ipbUnblock(2),

\

Sun Release 4.1 Last change: 17 July 1991 1

ipbLib(2) SYSTEMCALLS ipbLib(2)

NAME
ipbSet Set an Inter Processor Block

SYNOPSIS
void ipbSet(IPB_FLAGflag);

IPB_FLAGflag; /* The IPB Flag to set */

I

DESCRIPTION

The ipbSet function simply places the specified IPB in the

BLOCKED state. Any subsequent ipbTake's on that particular

IPB flag will cause the "taking" process to block until the

IPB is unblocked.

INCLUDE FILE

ipbLib.h

SEE ALSO

ipbLib(2), ipbCreate(2),

msgLib(2), mbxAuxLib(2)

AUTHOR

Keith Fieldhouse

ipbTake (2) , ipbUnblock(2),

!

|

Sun Release 4.1 Last change: 17 July 1991

!

ipbLib(2) SYSTEM CALLS ipbLib(2)

INCLUDE FILE -

ipbLib.h

SEE ALSO

ipbCreate(2), ipbTake(2),

msgLib(2), mbxAuxLib(2)

AUTHOR

Keith Fieldhouse

ipbSet(2), ipbUnblock(2),

Sun Release 4.1 Last change: 17 July 1991

ipbLib(2) SYSTEM CALLS ipbLib(2)

NAME

ipbLib.c - Interprocessor Block Library

SYNOPSIS

ipbCreate

ipbTake

ipbSet

ipbUnblock

- Create and interprocessor block

- Take an interprocessor block

- Set an interprocessor block

- Unblock all processes which have taken an IPB

IPB_FLAG ipbCreate(IPB_STATE init);

void ipbTake(IPB_FLAG flag);

void ipbSet(IPB_FLAG flag);

void ipbUnblock(IPB_FLAG flag, IPB_STATE mode);

DESCRIPTION

The VxWorks, semaphore library, while rich, is limited to

intra-processor situations. Often, it is desirable to allow

one process to block on a semaphore (ala the VxWorks

library) and to be freed by a process on another processor

on the same VME cage. The TAS primitives are not sufficient

for this task since the require that polling be done on an

unavailable semaphore leading to busy waits or unacceptably

high latencies. The InterProcessor Block library is

designed to address these issues.

The ipbLib provides routines to create Inter Processor

Blocks. When a processor "takes" one of these blocks, if it

is in the blocking state, the process is blocked on a

VxWorks binary semaphore (see semLib(2)) thus giving the

scheduler the opportunity to movethe process to the BLOCKED

state. When a processor unblocks an IPB, all of the

processes affilated with that IPB are unblocked on all of

the processes on the VME cage. The user is given the option

of leaving the IPB in the blocked state, eliminating a win-

dow of non blocking on that IPB or the actually clear the

semaphore until it is reset.

!

NOTE

In order to achieve it's function, ibpLib connects an ISR to

the mbxAux interrupt on each processor on which it is ini-

tialized. When an IPB is unblocked, the mbxAux interrupt is

generated for each CPU. The ISR checks a status table that

it maintains in shared memory (ipbLib_comm) and unblocks the

appropriate VxWorks semaphore on its processor.

IPBs are constant through out the cage and can be transmit-

ted by whatever means are convenient. The message passign

abilities of msgLib are particularly well suited to this.

|

Sun Release 4.1 Last change: 17 July 1991

!

